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Spherically symmetric scalar field collapse
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Abstract. It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes
even when the energy condition is violated, that is, for (ρ + 3p) < 0. This result may be useful in
the investigation of the possible clustering of dark energy. All the examples dealt with have apparent
horizons formed before the formation of singularity. The singularities formed are shell focussing in
nature. The density of the scalar field distribution is seen to diverge at singularity. The Ricci scalar
also diverges at the singularity. The interior spherically symmetric metric is matched with exterior
Vaidya metric at the hypersurface and the appropriate junction conditions are obtained.
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1. Introduction

The ultimate fate of a collapsing matter distribution remains a subject of intense interest
for many years. It is generally believed that a collapsing matter distribution, if it satisfies
the energy condition (ρ + 3p) > 0, will crush to a singularity. There is however no
general indication whether an event horizon would form to shield this singular state of
matter from a distant observer. In fact, there are ample theoretical examples where the
singularities could be naked to an external observer either for a finite period of time or
even for ever. For a comprehensive review we refer the reader to the monograph by
Joshi [1]. A lot of work therein or that carried out later normally considered the collapse of
a perfect fluid. As the final stages of collapse might involve dissipative processes as well,
some later investigations also consider viscous effects (see [2] and references therein).

Investigations on collapsing gravitational systems with a scalar field revealed that the
nonlinearity of Einstien equations could lead to critical phenomena close to the threshold
of black hole formations [3]. Naturally, this led to an arena of great interest (for recent
reviews we refer the reader to [4]). Furthermore, the scalar field collapse could also lead to
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the formation of naked singularities. This was demonstrated by analytical investigations
by Christodoulou [5], Goswami and Joshi [6], Giambo [7] and also by numerical work of
Choptuik [3], Brady [8], Gundlach [9], and others.

In a series of papers, Christodoulou [10–12] pioneered analytical studies in gravita-
tional collapse of a spherically symmetric configuration of massless scalar field models.
Detailed investigations on such models have been carried out later [3,8,13]. Collaps-
ing spherically symmetric massive scalar field models have also appeared in [7,14–16].
Gonclaves [14] investigated the black hole formation with a massive scalar field in an
Einstein–de Sitter Universe. Gonclaves and Moss [15] also showed that for a range of
parameters, the collapse of a spherically symmetric scalar field could be formally treated
as a collapsing dust ball. This is similar to the case of γ = 1

2 in the present work (§3.3).
Giambo [7] showed that a massive scalar field, if collapses completely, can give rise to a
naked singularity. Goswami and Joshi [6] constructed a class of solutions with a massive
scalar field which could lead to a naked singularity.

The very recent interest in scalar field collapse stems from a cosmological requirement.
It has already become a folklore that the present Universe is undergoing an accelerated
phase of expansion. Scalar fields endowed with a potential are amongst the most favoured
candidates as the ‘dark energy’ – the agent driving the cosmic acceleration [17]. Although
the general speculation is that the dark energy does not cluster at any scale below the
Hubble scale, there is not much evidence for this. The collapse dynamics of a minimally
coupled scalar field with a negative effective pressure can indeed help us to have a better
understanding of the scenario.

The objective of the present investigation is to explore the collapsing modes of a simple
spherically symmetric minimally coupled scalar field model. The scalar field φ is assumed
to depend only on time. So this is an analogue of Oppenheimer–Snyder model of the
collapse of a spatially homogeneous fluid [18].

Section 2 describes the scalar field distribution and obtains the general first integrals
in situations where the effective pressure pφ and energy density ρφ of the scalar field
are related as pφ = wρφ , w being a constant. Section 3 discusses special cases of the
collapsing models. In §4 the collapsing space-time is matched at the boundary with an
external metric and in §5 some concluding remarks are made.

2. Spherically symmetric time-dependent distribution of a scalar field

The relevant action for a scalar field minimally coupled to gravity is given by

A =
∫ √−gd4x

[
R + 1

2
φ,μφ,μ − V (φ)

]
. (1)

We take the spherically symmetric metric as

ds2 = dt2 − A2(r, t)dr2 − B2(r, t)d�2, (2)

where A and B are functions of the radial coordinate r and time t . A minimally coupled
scalar field φ endowed with a potential V = V (φ) is considered. For the sake of simplicity,
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the scalar field is taken to be spatially homogeneous and evolving with time alone. The
non-trivial field equations become

− 2B ′′

A2 B
+ 2A′ B ′

A3 B
− B ′2

A2 B2
+ 2

Ȧ Ḃ

AB
+ Ḃ2

B2
+ 1

B2
= 1

2
φ̇2 + V (φ), (3)

B ′2

A2 B2
− 2

B̈

B
− Ḃ2

B2
− 1

B2
= 1

2
φ̇2 − V (φ), (4)

B ′′

A2 B
− A′ B ′

A3 B
− Ä

A
− B̈

B
− Ȧ Ḃ

AB
= 1

2
φ̇2 − V (φ), (5)

B ′

B

Ȧ

A
− Ḃ ′

B
= 0, (6)

where φ = φ(t) is the scalar field and V (φ) is the scalar potential. The equations are
written in units where 8πG = 1. An overhead dot and prime indicate differentiation with
respect to t and r respectively. As already mentioned, the contribution from matter (the
scalar field in this case) is spatially homogeneous like the homogeneous fluid collapse
discussed by Oppenheimer and Snyder [18]. Equation (6) readily integrates to yield

B ′ = λ(r)A, (7)

where λ(r) is an arbitrary function of r . In what follows, λ(r) is taken to be constant
for the sake of simplicity. This indeed is a special case, but these would lead to some
tractable solutions so that the possibility of collapse can be investigated. However, if
A(r, t) is separable as a product of functions of r and t , the assumption (7) is hardly
restrictive as λ(r) in that case can be absorbed by the scaling of the radial coordinate.
Anyway, the physical motivation is that in this case the collapsing model will eventually
become an FRW one. If A and B are now written as A2 = eα and B2 = eβ , the field
equations take a much simpler form as

β̇2

4
+ α̇β̇

2
= 1

2
φ̇2 + V (φ), (8)

β̈ + 3

4
β̇2 = −1

2
φ̇2 + V (φ), (9)

α̈

2
+ α̇2

4
+ β̈

2
+ β̇2

4
+ α̇β̇

4
= −1

2
φ̇2 + V (φ), (10)

where eq. (7) has been used, which now reads as

eα = β ′2

4
eβ. (11)

The wave equation for the scalar field is given by

φ,μ;μ + V,φ = 0. (12)

In what follows, the potential V (φ) will be assumed to be proportional to φ̇2,

V (φ) = γ φ̇2, (13)
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where γ is a constant. Indeed this choice does not have any physical requirement, but
along with a major simplification for the equation system, the ansatz provides the fourth
equation which we require to solve the system of equation. We have only three indepen-
dent equations (8)–(10) to solve four unknowns α, β, φ and V . As g00 = 1 and φ = φ(t),
φ̇2 is actually φ,μφ,μ which is indeed a scalar and eq. (13) is thus consistent. One can see
that γ > 1

2 would lead to the case where the effective pressure is negative.
However, it deserves mention at this stage that the field in this case is not a k-essence

field where the scalar field Lagrangian is given by L(X), where X = (∇φ)2. Actually, the
model does have a potential and the present work deals with those which are proportional
to the kinetic part. We shall see later that an exponential potential is in fact consistent
with the ansatz (13) in the present model.

The equation of state parameter,

w = p,φ

ρ,φ

=
1
2 φ̇2 − V (φ)

1
2 φ̇2 + V (φ)

will be a constant given by w = (1 − 2γ )/(1 + 2γ ). For γ ≥ 1, the equation of state
parameter ω is more negative than − 1

3 and the scalar field acts as a dark energy. For any
finite positive value of γ , w remains greater than −1 and hence the scalar field is in fact a
quintessence field and cannot give a phantom field with w < −1. If γ = 0, that is, for the
case without potential, the value of w becomes 1 and the field is then formally similar to a
stiff fluid. For γ = 1

2 , one has an effectively zero pressure, and the scalar field is formally
equivalent to a pressureless dust.

With the help of eq. (13), the wave equation (12) yields the first integral as

φ̇(2γ+1) = 1

e( α
2 +β)

g(r), (14)

where g(r) is an arbitrary function of r to be determined from initial conditions. As φ is
assumed to be spatially homogeneous, this equation indicates,

e( α
2 +β) = g(r) f (t), (15)

where f (t), a function of time, has to be determined from the field equations. This gives
the form of eq. (14) as

φ̇ = f (t)−1/(1+2γ ). (16)

Using (15) in a combination of field equations (8)–(10) one obtains

f̈ = 3γ [ f (t)](2γ−1)/(2γ+1), (17)

which readily yields a first integral as

ḟ 2 = 3

2
(2γ + 1) f 4γ /(2γ+1) + C1, (18)

C1 being an arbitrary constant. In order to satisfy the field equations, one can verify that
C1 = 0. Choosing g(r) as r2 the solution of eα and eβ are given as

eα = ( f (t))2/3, (19)

and

eβ = ( f (t))2/3r2. (20)
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Equation (18) can be written as (with C1 = 0),

ḟ = −
√

3

2
(2γ + 1) f 2γ /(2γ+1). (21)

The negative root is chosen in order to consider a collapsing scenario. Equation (21)
readily integrates to yield

f =
(

t0
2γ + 1

−
√

3

2(2γ + 1)
t

)(2γ+1)

, (22)

where t0 is another constant of integration.
The solution of the scalar field φ as some function of t is given by (using eqs (14) and

(15)),

φ = −
√

2(2γ + 1)

3
ln

(
t0

2γ + 1
−

√
3

2(2γ + 1)
t

)
. (23)

As the complete set of solutions is now in hand, it is not difficult to check which form
of potential is consistent with the ansatz (13). It is easy to see from eq. (23) that

φ̇2 =
(

t0
2γ + 1

−
√

3

2(2γ + 1)
t

)−2

= exp

⎛
⎝ 2φ√

2(2γ+1)

3

⎞
⎠ . (24)

In conjunction with eq. (13), one can now write,

V (φ) = γ exp

⎛
⎝ 2φ√

2(2γ+1)

3

⎞
⎠. (25)

3. Collapsing models

3.1 γ < 1/2

For values of γ < 1/2, the matter content satisfies the energy condition (ρ + 3p > 0).
Choosing γ = 1/4, one has the solution of f (t) as

f (t) =
(

2

3
t0 − t

)3/2

. (26)

Now e
α
2 +β , which according to eq. (15) is given by g(r) f (t), determines the proper

volume. The above equation clearly shows that f (t) indeed has a non-zero value for all t
less than 2t0/3 but becomes zero when time t = 2

3 t0. So for this value of t (designated as
ts), one has a singularity of a zero volume. Choosing a value of t0 = 3, one gets ts = 2.
The plot of f (t) vs. t in figure 1 clearly reveals the collapsing scenario.

The condition for the apparent horizon is

gαβ R,α R,β = 0, (27)
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Figure 1. Plot of f (t) vs. t for γ = 1/4 keeping t0 = 3.

where R is the proper radius of the two spheres. In the present case R = B = eβ/2 and
eq. (27) reads like

g00 Ḃ2 + g11 B ′2 = 0, (28)

that is

β̇2 − e−αβ ′2 = 0, (29)

which in view of (11) yields

eββ̇2 = 4. (30)

The time of formation of the apparent horizon, tah, has been calculated for a fixed value
of r = 1 in all the cases discussed here. In this case (γ = 1/4 and t0 is chosen as 3),
tah = 1.967. Hence the singularity formed is shielded by the horizon.

3.2 γ > 1
2

Choosing a value of γ > 1
2 makes ρ+3p < 0, that is, the energy condition is violated and

the scalar field is apt to act as a dark energy. With a choice of γ = 3/2 (as an example),
the solution of f (t) turns out to be,

f (t) =
(

t0
4

−
√

3

8
t

)4

. (31)

It is evident from the above expression that f (t) becomes zero when t = t0/
√

6. Hence
one indeed has a singularity of a zero proper volume ( f = 0) at a finite future. Choosing
t0 = 4 one gets ts = 1.632 and tah = 0.636. Figure 2 shows the plot of f (t) against
time for t0 = 4. It is observed that initially there is a non-zero proper volume and then the
singularity of zero volume is attained at a finite time. A change in initial condition changes
the time at which singularity is attained keeping the nature of the plots unchanged. The
time at which apparent horizon is formed also changes with the change of initial condition.
For the choice of t0 = 4, tah < ts. Hence the singularity formed is covered by the horizon
from an external observer.
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Figure 2. Plot of f (t) vs. t for γ = 3/2 keeping t0 = 4.

For some other choice of γ > 1/2, for example γ = 5/2 and choosing t0 = 6, f (t) vs.
t is plotted as shown in figure 3. The plot shows that in this case also f (t) becomes zero
at some finite time (ts = 2). The value of tah is 0.592. In all the cases tah < ts, thus the
singularities formed are hidden behind the horizon.

The energy density and the effective pressure of the scalar field are given by ρφ =
( 1

2 + γ ) f (t)−2/(1+2γ ) and pφ = ( 1
2 − γ ) f (t)−2/(1+2γ ) respectively. From the expressions

for f (t) it is clear that for any positive value of γ whether it is greater than or less than
1/2, the density and pressure of the scalar field would diverge at the time at which the
proper volume becomes zero. The Ricci scalar R also diverges at the singularity as is
evident from its expression given below.

R = − f̈

f
+ 1

9

ḟ 2

f 2
+ 36 f −2/3

r2
. (32)

3.3 γ = 1/2

For γ = 1/2, the model formally resembles a perfect fluid distribution with zero pressure.
From eq. (22), one has the solution of f (t) as

f (t) = (t0 − √
3t)

2

2

. (33)

Figure 3. Plot of f (t) vs. t for γ = 5/2 keeping t0 = 6.
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Figure 4. Plot of f (t) vs. t for γ = 1/2 keeping t0 = 2.

At time t = t0/
√

3 the proper volume becomes zero. Choosing t0 = 2, one gets ts =
1.155. Figure 4 shows the plot of f (t) vs. t for γ = 1/2. The time of apparent horizon
formation in this case is tah = 1.071 which is once again less than the value of ts.

Singularities formed in collapse can be shell focussing or shell crossing in nature [19,
20]. For a spherically symmetric collapse the shell focussing singularity occurs at gθθ = 0
and the shell crossing singularity occurs when (dgθθ /dr) = 0, gθθ �= 0 and r > 0. It is
evident from eqs (2) and (20) that gθθ = r4 f (t)2/3. At singularity, since f (t) = 0,
gθθ = 0 clearly indicates that the singularities formed in all the cases are shell focussing
in nature.

4. Matching with the exterior metric

The interior metric now has to be matched with an exterior metric at the boundary �.
Following ref. [6], we match the spherical ball of collapsing scalar field to a generalized
Vaidya metric [21]. The metric just inside � is,

ds2
− = dt2 − eαdr2 − eβd�2, (34)

and the metric in the exterior of � is given by

ds2
+ =

(
1 − 2M(rv, v)

rv

)
dv2 + 2dv drv − rv

2d�2. (35)

Matching the first fundamental form on the hypersurface we get(
dv

dt

)
�

= 1√
1 − 2M(rv,v)

rv
+ 2drv

dv

(36)

and

rv = r f (t)1/3. (37)

Matching the second fundamental form yields,

eβ/2 = rv

⎛
⎝ 1 − 2M(rv ,v)

rv
+ 2drv

dv√
1 − 2M(rv,v)

rv
+ 2rv

dv

⎞
⎠ . (38)
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Using eqs (36)–(38) one can write

dv

dt
= 1 − r f −2/3

3

1 − 2M f −1/3

r

. (39)

From eq. (38) one obtains

M =
r−1 f −1/3 + r f −5/3

9 +
√

1
r2 f 2/3 + r2

81 f 10/3 − 2
9 f 2

4
r2 f 2/3

. (40)

Matching the second fundamental form we can also write the derivative of M(v, rv) as

M(rv, v),rv
= M

r f 1/3
− 2r2

9 f 4/3
. (41)

Equations (37), (39), (40) and (41) completely specify the matching conditions at the
boundary of the collapsing scalar field.

5. Discussions

The present work investigates a simple spherically symmetric space-time with a scalar
field. The scalar field is self-interacting, i.e., it has a potential. The field is chosen as
spatially homogeneous. So it represents the scalar field analogue of Oppenheimer–Snyder
collapse for a perfect fluid [18]. At least for the special case where the potential can be
written as proportional to the kinetic part of φ, it can be shown that the model possesses
a collapsing solution.

Most of the models on massive scalar field collapse, available in the literature [7,14,15],
demonstrate that the formation of either a naked singularity or a black hole are subject to
the initial conditions. They generally work it out for energy condition (ρ + 3p) > 0. In
our work we demonstrate the collapse of a scalar field endowed with a potential for both
the energy conditions (ρ + 3p) > 0 and (ρ + 3p) < 0. The value of the equation of state
parameter w, determined by the value of γ , dictates whether the energy condition is sat-
isfied or not. When γ is less that −1, the energy condition is violated. For (ρ + 3p) > 0,
like many other models [6,7,16], we get singularities at a finite time and the possibility
of the formation of an apparent horizon ahead of the collapse to the singularity. But the
intriguing feature of the present work is that we obtain singularities at a finite time even
for the condition (ρ + 3p) < 0 wherein the effective pressure is negative. So this is an
investigation of the collapse scenario of dark energy itself rather than collapse of a fluid
against a dark energy background [22]. This is an indication towards the possibility of the
clustering of dark energy, where (ρ + 3p) < 0.

All the examples discussed in the present work allow the formation of an apparent
horizon well before the distribution crushes to the singularity of zero volume. So the
singularities are not naked. The interior metric has been matched with the exterior Vaidya
metric and the appropriate matching conditions are obtained.

In all the cases (for different values of γ chosen) it is observed that the energy density
as well as the effective pressure for the scalar field diverge at the singularity. It has been
checked that the scalar curvature R = Rμ

μ also diverges as the proper volume becomes
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zero. The scalar field φ also is singular at ts. Equations (26) and (31) have a deceiving
feature, i.e., although the volume is zero at t = ts, it becomes quite well behaved beyond
ts. A look at eq. (23) reveals that actually beyond ts the scalar field itself becomes unde-
fined as the argument of logarithm becomes negative. So one indeed has a singularity at
a finite future, beyond which the model cannot be discussed any further.

The present work deals with a particular potential and does not represent a general kind
of potential. Although we started with an assumption that the potential is proportional to
the kinetic part, actually the model is that of an exponential potential (25).
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