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Abstract. In this paper, exact solutions of Benjamin–Bona–Mahony–Peregrine equation are
obtained with power-law and dual power-law nonlinearities. The Lie group analysis as well as
the simplest equation method are used to carry out the integration of these equations. The solutions
obtained are cnoidal waves, periodic solutions and soliton solutions. Subsequently, the conservation
laws are derived for the underlying equations.
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1. Introduction

Finding the exact solutions of nonlinear evolution equations (NLEEs) plays an important
role in the study of many physical phenomena in various fields such as fluid mechanics,
solid-state physics, plasma physics, chemical physics, optical fibre and geochemistry.
Thus, it is important to investigate the exact explicit solutions of NLEEs [1–20]. Finding
solutions of such an equation is a difficult task and only in certain special cases one can
write down the solutions explicitly.

One such NLEE is the celebrated Korteweg–de Vries (KdV) equation which governs
the dynamics of solitary waves. Originally it was derived to describe shallow water waves
of long wavelength and small amplitude. Recently, another equation that models long
waves in shallow water in ocean beaches was proposed. This is called the Benjamin–
Bona–Mahony equation (BBM) [21] and has the form

ut + ux + αuux − uxxt = 0.

DOI: 10.1007/s12043-012-0489-9; ePublication: 18 February 2013 413



Chaudry Masood Khalique

The BBM equation is also known as the regularized long-wave equation and was also
derived by Peregrine [22]. Hence the name Benjamin–Bona–Mahony–Peregrine (BBMP).

The notion of conservation laws plays an important role in the solution process of
differential equations. Finding the conservation laws of a system of differential equations
(DEs) is often the first step towards finding the solution. In fact, the existence of a large
number of conservation laws of a system of partial differential equations (PDEs) is a
strong indication of its integrability [23]. In [24], the invariance of a conservation law
was used to obtain solutions for a problem in thin films. In jet problems, the conserved
quantity plays an essential role in the derivation of the solution. Recently, in [25] the
conserved quantity was used to determine the unknown exponent in the similarity solution
which cannot be obtained from the homogeneous boundary conditions.

In this paper we study the BBMP equation with power-law and dual power-law
nonlinearities, namely

qt + aqx + bqnqx + cqxxt = 0 (1)

and

qt + aqx + (bqn + cq2n)qx + kqxxt = 0, (2)

where a, b, c, k and n are real constants. Here, in (1) and (2) the first term represents the
evolution term, while the last term in both equations represents the dispersion term. The
third term in (1) and the third and fourth terms in (2) are the nonlinear terms.

The purpose of this paper is two-fold. Firstly, we use Lie symmetry method along with
the simplest equation method to obtain exact solutions of (1) and (2). Secondly, we derive
conservation laws for both the equations.

The outline of the paper is as follows. In §2, we obtain exact solutions of (1) and (2)
using the Lie group and simplest equation methods. Then in §3, we construct conservation
laws for both the equations. Finally, in §4 concluding remarks are made.

2. Exact solutions

In this section we present some exact solutions of (1) and (2) using Lie symmetry
approach and simplest equation method.

2.1 Group-invariant solutions using Lie symmetry approach

In this section we first calculate the Lie point symmetries of (1) and (2) and later use
them to construct group-invariant solutions. For the theory and applications of Lie group
analysis the reader is referred to the well-known books such as [23,26–28].

Recall that a Lie point symmetry of a partial differential equation (PDE) is an invert-
ible transformation of the dependent and independent variables that leaves the equation
unchanged. In general, determining all the symmetries of a partial differential equation
is a formidable task. However, Sophus Lie (1842–1899) observed that if we restrict our-
self to symmetries that depend continuously on a small parameter and that form a group
(continuous one-parameter group of transformations), one can linearize the symmetry
conditions and end up with an algorithm for calculating continuous symmetries.
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2.1.1 Group-invariant solutions of (1). The symmetry group of BBMP equation with
power-law nonlinearity (1) will be generated by the vector field of the form

� = ξ 1(t, x, q)
∂

∂t
+ ξ 2(t, x, q)

∂

∂x
+ η(t, x, q)

∂

∂q
.

Applying the third prolongation pr(3)� [26] to (1) we obtain the following overdetermined
system of ten linear partial differential equations:

ξ 1
q = 0,

ξ 2
q = 0,

ηqq = 0,

ξ 1
x = 0,

ξ 2
t = 0,

ηtq = 0,

bηx qn + ηt + aηx + cηt xx = 0,

bnηqn + bξ 1
t qn+1 − bξ 2

x qn+1 − bcηxxqqn+1 + aξ 1
t q − aξ 2

x q
+ 2cηt xqq − acηx,x,qq = 0,

2ξ 2
x + cηxxq = 0,

2ηxq − ξ 2
xx = 0.

After some straightforward, albeit tedious and lengthy calculations, the above system
gives the two translation symmetries

�1 = ∂

∂t
, �2 = ∂

∂x
.

One of the main reasons for finding symmetries of a differential equation is to use them
for finding exact solutions. We now utilize these symmetries to deduce exact solutions of
(1). The symmetry V = �1 + ν�2, where ν is a constant, reduces the BMBP equation (1)
to a nonlinear ordinary differential equation (ODE). It can be seen that the symmetry V
yields the following two invariants:

z = x − νt, F = q. (3)

Treating F as the new dependent variable and z as new independent variable, the BMBP
equation (1) transforms to the third-order nonlinear ODE

cνF ′′′(z) − bFn(z)F ′(z) − (a − ν)F ′(z) = 0. (4)

It should be noted here that one can assume q = F(z), z = x − νt and arrive at (4).
However, when using the Lie symmetry approach no such form of the solution is assumed.
It is the beauty of this approach that one automatically gets the form of the solution as
q = F(x − νt). Integrating equation (4) twice with respect to z and taking the constants
to be zero we obtain(

dF

dz

)2

= 1

cν

[
(a − ν)F2 + 2b

(n + 1)(n + 2)
Fn+2

]
. (5)
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This is a first-order variables separable equation. Integrating the above equation and
reverting back to the original variables, we obtain the following solution of the BMBP
equation (1) for arbitrary values of n in the form

q(x, t) =
(

(n + 1)(n + 2)(ν − a)

2b

)1/n

sech2/n

[
n

2

√
a − ν

cν
(x − νt)

]
. (6)

By taking a = 3, b = 1, c = 1, n = 1 and ν = 2 in (6) we have the following profile of
the solution of (6) (see figure 1).

Likewise, one can obtain more group-invariant solutions of the BMBP equation (1).
However, we list here a few exact solutions.

q(t, x) = 1

b
{ν − a + 8νc + 12νc tan2 (x − νt)}, (7)

q(t, x) = 1

b
{ν − a − 4νc + 8νcm2 − 12νc m2cn2 (x − νt |m)}. (8)

Here cn(Z |m) is the Jacobian elliptic functions [29], which is defined as follows: If

Z =
∫ φ

0

dθ√
1 − m sin2 θ

,

where the angle φ is called the amplitude, then the function cn(Z |m) is defined as
cn(Z |m) = cos φ, where m is the modulus of the elliptic function and 0 ≤ m ≤ 1.

Figure 1. Profile of solution (6).
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By taking a = 1, b = 1, c = 3, m = 0.5 and ν = 1 in (8) we have the following profile
of the solution of (8) (see figure 2).

2.1.2 Group-invariant solutions of (2). The BBMP equation with dual power-law non-
linearity (2) has the same two symmetries as the BBMP equation with power-law
nonlinearity. Using the same procedure as in the previous section we obtain the following
implicit solution of (2) for arbitrary values of n in the form

1

n
√

a − ν
ln

[
qn

(n + 1)(n + 2)(a + P) + bqn

]
= ±

√
1

kν
(x − νt) + C1, (9)

where

P =
√

(a − ν)

(
a + 2bqn

(n + 1)(n + 2)
+ cq2n

(n + 1)(2n + 1)
− ν

)
− ν

and C1 is an arbitrary constant of integration.

2.2 Solutions using the simplest equation method

We now use the simplest equation method which was introduced by Kudryashov [30,31]
and modified by Vitanov [32] (see also [33]) to solve (1) and (2) for n = 1. The simplest
equations that will be used are the Bernoulli and Riccati equations.

Figure 2. Profile of solution (8).
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Let us consider the solution of (4) in the form

F(z) =
M∑

i=0

Ai (G(z))i , (10)

where G(z) satisfies the Bernoulli and Riccati equations, M is a positive integer that can
be determined by balancing procedure as in [32] and A0, . . . , AM are parameters to be
determined. We note that the Bernoulli and Riccati equations are well-known nonlinear
ODEs whose solutions can be expressed in terms of elementary functions.

We consider the Bernoulli equation

G ′(z) = dG(z) + eGs(z), (11)

where s is an integer with s > 1 and for simplicity we let s = 2. As a result the solutions
of the Bernoulli equation are [33]

G(z) = d

{
cosh[d(z + C)] + sinh[d(z + C)]

1 − e cosh[d(z + C)] − e sinh[d(z + C)]
}

for d > 0, e < 0 and

G(z) = −d

{
cosh[d(z + C)] + sinh[d(z + C)]

1 + e cosh[d(z + C)] + e sinh[d(z + C)]
}

for d < 0 and e > 0. Here C is a constant of integration. For the Riccati equation

G ′(z) = dG2(z) + eG(z) + f (12)

we shall use the solutions [33]

G(z) = − e

2d
− θ

2d
tanh

[
1

2
θ(z + C)

]

and

G(z) = − e

2d
− θ

2d
tanh

(
1

2
θ z

)
+ θ{1 + tanh(zθ/2)}

2{d + 2Cθ cosh2 (zθ/2) + Cθ sinh(zθ)} ,

where θ2 = e2 − 4d f > 0 and C is a constant of integration.

2.2.1 Solutions of (1) using the simplest equation method.

Solutions of (1) using Bernoulli equation as the simplest equation. The balancing pro-
cedure with s = 2 [32] yields M = 2 and so the solutions in (10) are of the form

F(z) = A0 + A1G + A2G2. (13)
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Substituting (13) into (4) and making use of (11) and then equating all coefficients of the
functions Gi to zero, we obtain an algebraic system of equations in terms of A0, A1 and
A2. These algebraic equations are

a A1d + A0 A1bd + A1(−c)d3ν − A1dν = 0,

2a A2d + a A1e + A2
1bd + 2A0 A2bd + A0 A1be − 8A2cd3ν

− 7A1cd2eν − 2A2dν − A1eν = 0,

2a A2e + 3A1 A2bd + A2
1be + 2A0 A2be − 38A2cd2eν

− 12A1cde2ν − 2A2eν = 0,

2A2
2bd + 3A1 A2be − 54A2cde2ν − 6A1ce3ν = 0,

2A2
2be − 24A2ce3ν = 0.

Solving the above system of algebraic equations with the aid of Mathematica, we obtain
the following values of A0, A1 and A2:

A0 = −a + cd2ν + ν

b
, A1 = 12cdeν

b
, A2 = 12ce2ν

b
.

Therefore, when d > 0 and e < 0, the solution of (1) with n = 1 is given by

q(t, x) = A0 + A1d

{
cosh[d(z + C)] + sinh[d(z + C)]

1 − e cosh[d(z + C)] − e sinh[d(z + C)]
}

+ A2d2

{
cosh[d(z + C)] + sinh[d(z + C)]

1 − e cosh[d(z + C)] − e sinh[d(z + C)]
}2

(14)

and when d < 0 and e > 0 the solution of (1) is

q(t, x) = A0 − A1d

{
cosh[d(z + C)] + sinh[d(z + C)]

1 + e cosh[d(z + C)] + e sinh[d(z + C)]
}

+ A2d2

{
cosh[d(z + C)] + sinh[d(z + C)]

1 + e cosh[d(z + C)] + e sinh[d(z + C)]
}2

, (15)

where z = x − νt and C is a constant of integration.

Solutions of (1) using Riccati equation as the simplest equation. The balancing proce-
dure yields M = 2 and so the solutions in (10) are of the form

F(z) = A0 + A1G + A2G2. (16)

Substituting (16) into (4) and using (12), we obtain algebraic system of equations in terms
of A0, A1, A2 by equating all coefficients of the functions Gi to zero. The corresponding
algebraic equations are

a A1 f + A0 A1b f − 2A1cd f 2ν

−A1ce2 f ν − 6A2ce f 2ν − A1 f ν = 0,

a A1e + 2a A2 f + A0 A1be + A2
1b f + 2A0 A2b f − 8A1cde f ν

−16A2cd f 2ν + A1(−c)e3ν − 14A2ce2 f ν − A1eν − 2A2 f ν = 0,

a A1d + 2a A2e + A0 A1bd + A2
1be + 2A0 A2be + 3A1 A2b f − 8A1cd2 f ν

−7A1cde2ν − 52A2cde f ν − 8A2ce3ν − A1dν − 2A2eν = 0,
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2a A2d + A2
1bd + 2A0 A2bd + 3A1 A2be + 2A2

2b f − 12A1cd2eν

−40A2cd2 f ν − 38A2cde2ν − 2A2dν = 0,

3A1 A2bd + 2A2
2be − 6A1cd3ν − 54A2cd2eν = 0,

2A2
2bd − 24A2cd3ν = 0.

Solving the above equations one obtains

A0 = −a + 8cd f ν + ce2ν + ν

b
, A1 = 12cdeν

b
, A2 = 12cd2ν

b
and hence the solutions of (1) with n = 1 are

q(t, x) = A0 + A1

{
− e

2d
− θ

2d
tanh

[
1

2
θ(z + C)

]}

+ A2

{
− e

2d
− θ

2d
tanh

[
1

2
θ(z + C)

]}2

(17)

and

q(t, x) = A0 + A1

{
− e

2d
− θ

2d
tanh

(
1

2
θ z

)

+ θ{1 + tanh(zθ/2)}
2{d + 2Cθ cosh2(zθ/2) + Cθ sinh(zθ)}

}

+ A2

{
− e

2d
− θ

2d
tanh

(
1

2
θ z

)

+ θ{1 + tanh(zθ/2)}
2{d + 2Cθ cosh2(zθ/2) + Cθ sinh(zθ)}

}2

, (18)

where z = x − νt and C is a constant of integration.
By taking a = 1, b = 1, c = 1, d = 1, e = 3, f = 1, C = 1, k = 1 and ν = 1 in (18)

we have the following profile of the solution of (18) (see figure 3).

2.2.2 Solutions of (2) using the simplest equation method.

Solutions of (2) using Bernoulli equation as the simplest equation. The balancing
procedure in this case yields M = 1, and so the solutions of (4) are of the form

F(z) = A0 + A1G.

Now following the above procedure, we obtain

a = b2 + 4cν − 2cd2kν

4c
, A0 = −b ± √

b2 − 4ac + 4cν + 4cd2kν

2c
,

A1 = 2
(
2ae − 2eν + d2ekν + beA0

)
bd

.

Therefore, when d > 0 and e < 0 the solution of (2) with n = 1 is given by

q(t, x) = A0 + A1d

{
cosh[d(z + C)] + sinh[d(z + C)]

1 − e cosh[d(z + C)] − e sinh[d(z + C)]
}

(19)
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and when d < 0 and e > 0 the solution is

q(t, x) = A0 − A1d

{
cosh[d(z + C)] + sinh[d(z + C)]

1 + e cosh[d(z + C)] + e sinh[d(z + C)]
}
, (20)

where z = x − νt and C is a constant of integration.

Solutions of (2) using Riccati equation as the simplest equation. Here again the
balancing procedure yields M = 1, and so the solutions of (4) are of the form

F(z) = A0 + A1G.

In this case, we obtain

a = b2 + 4cν − 2ce2kν + 8cd f kν

4c
,

A0 = −b ± √
b2 − 4ac + 4cν + 4ce2kν + 8cd f kν

2c
,

A1 = 2
(
2ad − 2dν + de2kν − 4d2 f kν + bd A0

)
be

and hence the solutions of (2) with n = 1 are given by

q(t, x) = A0 + A1

{
− e

2d
− θ

2d
tanh

[
1

2
θ(z + C)

]}
(21)

and

q(t, x) = A0 + A1

{
− e

2d
− θ

2d
tanh

(
1

2
θ z

)

+ θ{1 + tanh(zθ/2)}
2{d + 2Cθ cosh2(zθ/2) + Cθ sinh(zθ)}

}
, (22)

where z = x − νt and C is a constant of integration.

Figure 3. Profile of solution (18).
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Figure 4. Profile of solution (22).

By taking b = 1, c = 1, d = 1, e = 3, f = 1, C = 1, k = 1 and ν = 1 in (22) we have
the following profile of the solution of (22) (see figure 4).

3. Conservation laws

In this section we construct conservation laws for (1) and (2). The multiplier method will
be used [26,34–36]. See also [37].

Consider a kth-order system of PDEs of n independent variables x = (x1, x2, . . . , xn)

and m dependent variables u = (u1, u2, . . . , um), viz.,

Eα(x, u, u(1), . . . , u(k)) = 0, α = 1, . . . , m, (23)

where u(1), u(2), . . . , u(k) denote the collections of all first, second, . . ., kth-order par-
tial derivatives, that is, uα

i = Di (uα), uα
i j = D j Di (uα), . . . respectively, with the total

derivative operator with respect to xi given by

Di = ∂

∂xi
+ uα

i

∂

∂uα
+ uα

i j

∂

∂uα
j

+ · · · , i = 1, . . . , n, (24)

and the summation convention is used whenever appropriate [28].
The following are known (see for example, [28] and the references therein).
The Euler–Lagrange operator, for each α, is given by

δ

δuα
= ∂

∂uα
+

∑
s≥1

(−1)s Di1 . . . Dis

∂

∂uα
i1i2...is

, α = 1, . . . , m. (25)
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The n-tuple vector T = (T 1, T 2, . . . , T n), T j ∈ A, j = 1, . . . , n, is a conserved vector
of (23) if T i satisfies

Di T
i |(23) = 0. (26)

Equation (26) defines a local conservation law of system (23).
A multiplier �α(x, u, u(1), . . .) has the property that

�α Eα = Di T
i (27)

hold identically. Here we shall consider multipliers of the second order, i.e., �α =
�α(t, x, q, qt , qx , qtt , qtx , qxx ). The right-hand side of (27) is a divergence expression.
The determining equation for the multiplier �α is

δ(�α Eα)

δuα
= 0. (28)

Once the multipliers are obtained, the conserved vectors are calculated via a homotopy
formula [35].

3.1 Conservation laws of (1)

For the BBMP equation with power-law nonlinearity (1), after some lengthy cal-
culations, we obtain the following three second-order multipliers, i.e., � =
�(t, x, q, qt , qx , qtt , qtx , qxx ) that are given by

�1 = 1, �2 = q, �3 = bqn+1

c(n + 1)
+ qtx . (29)

Corresponding to the above three multipliers we have the following conserved vectors
of (1):

T t
1 = 1

3
{3q + cqxx }, (30)

T x
1 = 1

3(n + 1)
{3anq + 3aq + 3bqn+1 + 2cnqtx + 2cqtx }, (31)

T t
2 = 1

6
{2cqxx q + 3q2 − cqx

2}, (32)

T x
2 = 1

6(n + 2)
{4cnqqtx + 8cqqtx + 3anq2

+ 6aq2 + 6bqn+2 − 2cnqt qx − 4cqt qx }, (33)
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T t
3 = 1

12c(n + 1)(n + 2)
{−3acn2qxx q − 9acnqxx q − 6acqxx q

− 2bcn2qx
2qn + 2bcqx

2qn + 2bcqxx qn+1 − 2bcnqxx qn+1

− c2n2qqtxxx − 3c2nqqtxxx − 2c2qqtxxx + 3cn2qqtx + 9cnqqtx

+ 6cqqtx + 12bqn+2 + 3acn2qx
2 + 9acnqx

2 + 6acqx
2

+ 2c2n2qxx qtx + c2n2qx qtxx + 6c2nqxx qtx + 3c2nqx qtxx

+ 4c2qxx qtx + 2c2qx qtxx + 3cn2qt qx + 9cnqt qx + 6cqt qx }, (34)

T x
3 = 1

12c(n + 1)2(n + 2)
{3acn3qqtx + 12acn2qqtx + 15acnqqtx

+ 6acqqtx + 2bcn3qt qx qn + 2bcn2qt qx qn + 14bcn2qtx qn+1

− 2bcqt qx qn − 2bcnqt qx qn + 22bcqtx qn+1 + 36bcnqtx qn+1

+ c2n3qqttxx + 4c2n2qqttxx + 5c2nqqttxx + 2c2qqttxx − 3cn3qtt q

− 12cn2qtt q − 15cnqtt q − 6cqtt q + 12abqn+2 + 12abnqn+2

+ 12b2q2n+2 + 6b2nq2n+2 + 3acn3qt qx + 12acn2qt qx

+ 15acnqt qx + 6acqt qx + 4c2n3qtx
2 + c2n3qt qtxx

− 2c2n3qx qttx + 16c2n2qtx
2 + 4c2n2qt qtxx − 8c2n2qx qttx

+ 20c2nqtx
2 + 5c2nqt qtxx − 10c2nqx qttx + 8c2qtx

2 + 2c2qt qtxx

− 4c2qx qttx + 3cn3qt
2 + 12cn2qt

2 + 15cnqt
2 + 6cqt

2}. (35)

3.2 Conservation laws of (2)

For the BBMP equation with dual power-law nonlinearity (2), we obtain the following
three second-order multipliers:

�1 = 1, �2 = q, �3 = 1

k

{
bqn+1

n + 1
+ cq2n+1

2n + 1

}
+ qtx . (36)

In this case the corresponding conserved vectors of (2) are

T t
1 = 1

3
{3q + kqxx }, (37)

T x
1 = 1

3(n + 1)(2n + 1)
{6an2q + 9anq + 3aq + 3bqn+1

+ 6bnqn+1 + 3cq2n+1 + 3cnq2n+1 + 4kn2qtx + 6knqtx + 2kqtx }
(38)

T t
2 = 1

6
{2kqxx q + 3q2 − kq2

x }, (39)
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T x
2 = 1

6(n + 1)(n + 2)
{4kn2qqtx + 12knqqtx + 8kqqtx + 3an2q2

+ 9anq2 + 6aq2 + 6bqn+2 + 6bnqn+2 + 6cq2n+2 + 3cnq2n+2

− 2kn2qt qx − 6knqt qx − 4kqt qx }, (40)

T t
3 = 1

12k(n + 1)(n + 2)(2n + 1)
{−6akn3qxx q − 21akn2qxx q

− 21aknqxx q−6akqxx q−4bkn3qx
2qn −2bkn2qx

2qn −4bkn2qxx qn+1

+ 2bkqx
2qn + 4bknqx

2qn + 2bkqxx qn+1 + 2bknqxx qn+1

− 4ckn3qx
2q2n − 8ckn2qx

2q2n − 2ckn2qxx q2n+1

+ 2ckqx
2q2n +cknqx

2q2n +2ckqxx q2n+1−3cknqxx q2n+1−2k2n3qqtxxx

− 7k2n2qqtxxx − 7k2nqqtxxx − 2k2qqtxxx + 6kn3qqtx + 21kn2qqtx

+ 21knqqtx +6kqqtx +12bqn+2+24bnqn+2+12cq2n+2+6cnq2n+2

+ 6akn3qx
2 + 21akn2qx

2 + 21aknqx
2 + 6akqx

2 + 4k2n3qxx qtx

+ 2k2n3qx qtxx + 14k2n2qxx qtx + 7k2n2qx qtxx

+ 14k2nqxx qtx + 7k2nqx qtxx + 4k2qxx qtx + 2k2qx qtxx

+ 6kn3qt qx + 21kn2qt qx + 21knqt qx + 6kqt qx }, (41)

T x
3 = 1

12k(n + 1)2(n + 2)(2n + 1)2
{8bkn5qx qt q

n + 16bkn4qx qt q
n

+ 2bkn3qx qt q
n − 14bkn2qx qt q

n − 2bkqx qt q
n − 10bknqx qt q

n

+ 8ckn5qx qt q
2n + 28ckn4qx qt q

2n + 26ckn3qx qt q
2n + ckn2qx qt q

2n

− 2ckqx qt q
2n − 7cknqx qt q

2n + 56bkn4qtx qn+1 + 200bkn3qtx qn+1

+ 246bkn2qtx qn+1 + 22bkqtx qn+1 + 124bknqtx qn+1 + 48abn3qn+2

+ 96abn2qn+2 + 12abqn+2 + 60abnqn+2 + 28ckn4qtx q2n+1

+ 120ckn3qtx q2n+1+175ckn2qtx q2n+1+22ckqtx q2n+1+105cknqtx q2n+1

+ 24b2n3q2n+2 + 12acn3q2n+2 + 12b2q2n+2 + 72b2n2q2n+2

+ 42acn2q2n+2 + 12acq2n+2 + 54b2nq2n+2 + 42acnq2n+2

+ 24bcn3q3n+2 + 84bcn2q3n+2 + 24bcq3n+2 + 84bcnq3n+2

+ 6c2n3q4n+2 + 12c2q4n+2 + 24c2n2q4n+2 + 30c2nq4n+2

+ 12akn5qtx q + 60akn4qtx q + 111akn3qtx q + 96akn2qtx q

+ 6akqtx q + 39aknqtx q − 12kn5qtt q − 60kn4qtt q

− 111kn3qtt q − 96kn2qtt q − 6kqtt q − 39knqtt q

+ 4k2n5qttxx q + 20k2n4qttxx q + 37k2n3qttxx q + 2k2qttxx q

+ 32k2n2qttxx q + 13k2nqttxx q + 12kn5qt
2 + 60kn4qt

2

+ 111kn3qt
2 + 96kn2qt

2 + 6kqt
2 + 39knqt

2 + 16k2n5qtx
2

+ 80k2n4qtx
2 + 148k2n3qtx

2 + 8k2qtx
2 + 128k2n2qtx

2

+ 52k2nqtx
2+12akn5qx qt +60akn4qx qt +111akn3qx qt + 96akn2qx qt

+ 6akqx qt + 39aknqx qt + 4k2n5qt qtxx + 20k2n4qt qtxx
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+ 37k2n3qt qtxx + 2k2qt qtxx + 32k2n2qt qtxx + 13k2nqt qtxx

− 8k2n5qx qttx − 40k2n4qx qttx − 74k2n3qx qttx − 4k2qx qttx

− 64k2n2qx qttx − 26k2nqx qttx }. (42)

4. Concluding remarks

In this paper, exact solutions of the Benjamin–Bona–Mahony–Peregrine equation were
obtained with power-law and dual power-law nonlinearities. The integration of these
equations was performed by the Lie group as well as the simplest equation methods. The
solutions obtained include the cnoidal waves, periodic solutions and non-topological soli-
ton solution. It was verified that the solutions found are indeed solutions to the original
equations. In general, the exact solutions obtained here could be helpful in the numerical
study of the underlying equations. Subsequently, the conservation laws of the Benjamin–
Bona–Mahony–Peregrine equation with power-law and dual power-law nonlinearities
were derived using second-order multipliers.
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