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Abstract. In this paper, Hawking radiation is studied from four-dimensional (4D) Kaluza–Klein
(KK) AdS black holes via the method of anomaly cancellation. The KK-AdS black hole considered
is a non-extremal charged rotating solution in the theory of 4D gauged supergravity. Its Hawking
fluxes of electric charge, angular momentum and energy momentum tensor are derived here. Our
results support the common view that Hawking radiation is the quantum effect arising at the event
horizon.
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1. Introduction

Hawking radiation is a universal quantum phenomenon existing in any geometry back-
ground with event horizon. Since Hawking discovered the thermal radiation effect of
Schwarzschild black hole more than 30 years ago, various methods have been developed
to derive Hawking radiation. A recent interesting method is the anomaly cancellation
method proposed by Wilczek and his collaborators [1–3]. This method associates Hawk-
ing radiation with the gravitational and gauge anomalies at the event horizon. To be more
precise, the Hawking fluxes are seen as compensating fluxes to cancel the gauge and
gravitational anomalies at the event horizon and preserve the invariance of fundamen-
tal physics under gauge and general coordinate transformations. Until now, the anomaly
cancellation method has been developed and applied to various cases [4–25].

In the context of the original anomaly cancellation method [1–3], the gauge and grav-
itational anomalies take consistent forms. However, the boundary condition needed to
fix the fluxes is that the covariant current vanishes at the event horizon. In ref. [17], the
authors generalized the anomaly cancellation approach in refs [1–3] to derive Hawking
fluxes totally in terms of covariant expressions, namely, all the anomalies and boundary
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conditions are covariant. The generalization in ref. [17] makes the anomaly cancellation
method more economical and conceptually cleaner. Extensions of ref. [17] may be found
in refs [18–21].

In this paper, we calculate the Hawking fluxes of the newly found 4D Kaluza–Klein
AdS (KK-AdS) black hole in ref. [27] by cancelling covariant gravitational and gauge
anomalies. The 4D KK-AdS black hole is asymptotically Ad S4. It is a non-extremal
charged rotating black hole solution in 4D gauged supergravity with single non-zero
charge. Our result further supports that Hawking radiation is a quantum effect taking
place at the event horizon. In §2, a brief review of the 4D KK-AdS black hole is provided.
In §3, the Hawking fluxes of electric charge, angular momentum and energy–momentum
tensor via covariant gauge and gravitational anomlies are computed. The conclusion are
given in the last section.

2. A brief review of the 4D KK-AdS black hole

In this section, a brief review of the 4D KK-AdS black hole solution in ref. [27] is given.
The 4D KK-AdS black hole in ref. [27] is an exact charged and rotating black hole

solution in 4D gauged supergravity. The Lagrangian for this black hole solution contains
a gravitational field, a dilaton field � and a non-zero U (1) gauge field Aμ. It is read as

L = √−g
[

R − 3

2
(∂�)2 − 1

4
e−3� F2 + 3ĝ2(e� + e−�)

]
, (1)

where F = d A and ĝ is a gauge-coupling constant. Let the three parameters m, a, δ

denote the mass, the angular momentum and the charge, respectively. The 4D KK-AdS
black hole, satisfying the field equations derived from the Lagrangian (1), takes the
form

ds2 = 1√
Hρ2�2

[−�θ(�θ�r − V 2(ĝ)a2 sin2 θ)dt2

− 4macr�θ

√
χ sin2 θdt dφ

+ (�θa4V 2(a−1) − �r a2 sin2 θ) sin2 θ dφ2]

+ ρ2
√

H
(dr2

�r
+ dθ2

�θ

)
, (2)

A = 2msr

�Hρ2
(c�θ dt − a

√
χ sin2 θ dφ), (3)

� = −1

2
log H, (4)
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where the functions �r , �θ , ρ, V (z) and H are defined by

�r = r2 − 2mr + a2 + ĝ2r2(r2 + 2ms2r + a2),

�θ = 1 − a2ĝ2 cos2 θ, ρ2 = r2 + a2 cos2 θ,

V 2(z) = (1 + z2r2)(1 + z2r2 + 2ms2z2r),

H = 1 + 2mrs2

ρ2
, (5)

respectively, and the four constants

� = 1 − ĝ2a2, χ = 1 + s2ĝ2a2, c = cosh δ, s = sinh δ. (6)

Setting m = 0 and performing suitable coordinate transformation to the coordinates (r, θ),
one can find that the 4D KK-AdS black hole (2) is asymptotically Ad S4. In the absence
of charge, i.e. δ = 0, the solution (2) reduces to the well-known 4D Kerr-AdS black hole
metric. Its Hawking radiation via quantum anomalies was studied in ref. [6]. Very recently,
the 4D KK-AdS black hole solution was generalized to the one in arbitrary dimensions
[28].

After obtaining a black hole solution, it is very important to compute its thermodynam-
ical quantities, such as the mass, the charge, the angular momentum, the entropy and the
temperature. All these quantities are presented in ref. [27]. For our purpose, we only
calculate the Hawking temperature. Let r+ denote the outside event horizon, which is the
largest root of the event horizon equation �r = 0. The Hawking temperature of the 4D
KK-AdS black hole via surface gravity formula is given as

TH = 1

4π

∂r�r

a2V (a−1)

∣∣∣
r+

=
�′

r (r+)

√
1 − s2g2r2+

4πc(r2+ + a2)
, (7)

where the prime ′ denotes the derivative to the coordinate r . The central aim of this paper is
to rederive the Hawking temperature (7) by the method of covariant anomaly cancellation.

3. Hawking radiation via covariant anomalies

In this section, the Hawking radiation of the 4D KK-AdS black hole (2) is investigated
by using the anomaly cancellation method proposed in refs [1–3]. But unlike the orig-
inal anomaly cancellation method, we adopted the modified one in ref. [17], where
both the gravitational and gauge anomalies are covariant. The main idea of the anomaly
cancellation method is as follows: Performing dimension reduction by considering a
massless scalar field, the original higher-dimensional space-time can be reduced to a
(1+1)-dimensional one near the horizon. If we omit the classically irrelevant ingoing
modes inside the horizon of the reduced (1+1)-dimensional metric, we shall get a 2D
chiral effective theory, which exhibits gauge and gravitational anomalies. In other words,
the gauge current and energy–momentum tensor are non-conserved. However, the fun-
damental physical theory is anomaly-free. Thus, to cancel these anomalies and restore
the invariance under gauge and diffeomorphism transformations, one gets compensating
fluxes that are equal to the Hawking fluxes for charge and energy–momentum tensor.
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As a beginning of our analysis, we now perform dimension reduction to the 4D KK-
AdS black hole (2) by taking into account the action for the massless scalar field

S[ϕ] = 1

2

∫
d4xϕ∗ Dμ

(√−ggμν Dνϕ
)

= 1

2

∫
dt dr dθ dφ

sin θ

�
ϕ∗

×
{

− a4V 2(a−1)

�r

[
Dt +

(
�(r) − �r

√
χ

ca3V 2(a−1)

)
Dφ

]2

+ ∂r (�r∂r ) + ĝ2�r − V 2(a−1) + �2

ĝ2a2V 2(a−1)
D2

φ

+ a2 sin2 θ

�θ

D2
t + �

sin2 θ
D2

φ + 1

sin θ
∂θ (sin θ�θ∂θ )

}
ϕ, (8)

where Dμ = ∂μ + ieAμ, and the function �(r) reads as

�(r) = a(1 + ĝ2r2)
√

χ

c(r2 + a2)
. (9)

It is worth noting that the angular velocity of the horizon is evaluated as �H = �(r+)

with the help of the expression of �(r).
In the near-horizon region, performing a partial wave decomposition

ϕ =
∑

ln

ϕln(t, r)einφ�ln(θ)

and only restoring the dominant terms, eq. (8) is written as

S[ϕ] � 1

2a2�V (a−1)

∑
ln

∫
dt dr ϕ∗

ln

{
− 1

f (r)
[∂t + ie(At + �(r)Aφ)

+ in�(r)]2 + ∂r [ f (r)∂r ]
}
ϕln, (10)

where

f (r) = �r

a2V (a−1)
. (11)

Equation (10) near the event horizon shows that the massless scalar field in the back-
ground of the original 4D KK-AdS black hole can be effectively described by an infinite
set of massless scalar fields in the (1+1)-dimensional space-time. The (1+1)-dimensional
effective metric and U (1) gauge field are

ds2 = − f (r)dt2 + dr2

f (r)
, (12)

Ãt = e ÃG
t + n ÃR

t = −es(1 + ĝ2r2)

c
− n�(r),

Ãr = 0, (13)

where the gauge field ÃG
t originates from the gauge field (3) in the 4D space-time and ÃR

t
comes from the contribution of the U (1) rotating symmetry.
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In the remainder of this section, our task is to derive the currents of gauge fields and
the Hawking fluxes of the energy–momentum tensor via covariant gauge and gravitational
anomalies. We first compute the currents corresponding to the gauge field ÃG

t . Near the
horizon (r ∈ [r+, r+ + ε]), omitting the classically irrelevant ingoing modes leads to
the breakdown of the classical gauge symmetry. Thus the gauge current J (G)μ

(H) obeys the
anomaly Ward identity [26]

∇μ

1

e
J (G)μ

(H) = −1

4π
√−g

εαβ F̃αβ, (14)

where F̃ = d Ã and the antisymmetry tensor density εαβ is defined as εtr = −εtr = 1.
Solving eq. (14), we have

J (G)r
(H) = c(G)

H + e

2π
[ Ãt (r) − Ãt (r+)], (15)

where the integration constant c(G)
H is the gauge current at the event horizon. In the region

outside the event horizon (r ∈ [r+ + ε,+∞)), the anomaly-free current J (G)μ

(O) takes the
conserved form

∇μ J (G)μ

(O) = 0. (16)

That is,

J (G)r
(O) = c(G)

O , (17)

where the integration constant c(G)
O is the gauge current at infinity. With the help of two

step functions �(r) = �(r − r+ − ε) and H(r) = 1 − �(r), we express the total gauge
current J (G)μ as

J (G)μ = J (G)μ

(O) �(r) + J (G)μ

(H) H(r). (18)

Then the Ward identity becomes

∂r J (G)r = ∂r

( e

2π
Ãt H

)
+

(
J (G)r
(O) − J (G)r

(H) + e

2π
Ãt

)
δ(r − r+ − ε). (19)

To restore the gauge symmetry, the second term should vanish at the horizon, which
leads to

c(G)
O = c(G)

H − e

2π
Ãt (r+). (20)

Imposing the boundary condition c(G)
H = 0, which means that the covariant current

vanishes at the horizon, we obtain the gauge current

c(G)
O = − e

2π
Ãt (r+) = e

2π

(es(1 + ĝ2r2+)

c
+ n�(r+)

)
. (21)

By a parallel analysis, we get the gauge currents c(R)
O and cO corresponding to ÃR

t and
Ãμ, respectively. They read as

c(R)
O = − n

2π
Ãt (r+) = n

2π

(es(1 + ĝ2r2+)

c
+ n�(r+)

)
, (22)

cO = − 1

2π
Ãt (r+) = 1

2π

(es(1 + ĝ2r2+)

c
+ n�(r+)

)
. (23)
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Next, we calculate the flux of energy–momentum tensor via covariant gravitational
anomaly. In the region near the horizon (r ∈ [r+, r+ + ε]), the invariance under general
coordinate transformation will break down if the quantum effect of the ingoing modes is
omitted, which leads the two-dimensional (2D) effective field theory to exhibit a gravita-
tional anomaly. For the right-handed fields, the 2D covariant gravitational anomaly obeys
the anomalous Ward identity [26]

∇μT μ
ν = 1

96π
√−g

ενμ∂μ R = 1√−g
∂μNμ

ν. (24)

Adding the contribution from the gauge field, the anomalous Ward identity near the
horizon becomes

∇μT μ

(H)ν = F̃μν J̃μ

(H) + 1

96π
√−g

ενμ∂μ R, (25)

where

J̃μ

(H) = 1

e
J (G)μ

(H) .

Solving ν = t component of eq. (25), we get

T r
(H)t = aH +

[
cO Ãt (r) + 1

4π
Ã2

t (r) + Nr
t

]∣∣∣
r

r+
, (26)

where the integration constant aH is the flux at horizon and

Nr
t = 1

192π

(
2 f f ′′ − f ′2). (27)

In the region far away from the horizon, the energy–momentum tensor satisfies the
Lorentz force law

∇μT μ

(O)ν = F̃μν J̃μ

(O). (28)

The ν = t component of the above equation is solved as

T r
(O)t = aO + cO Ãt (r), (29)

where the constant aO is the flux of the energy–momentum tensor at infinity.
As before, we use the two step functions �(r) and H(r) to express the total energy–

momentum tensor T μ
ν as the combination of T μ

(O)ν and T μ

(H)ν , that is,

T μ
ν = T μ

(O)ν�(r) + T μ

(H)ν H(r). (30)

Then, we have

∇μT μ
t = cO∂r Ãt + ∂r

[( 1

4π
Ã2

t + Nr
t

)
H

]

+
(

T r
(O)t − T r

(H)t + 1

4π
Ã2

t + Nr
t

)
δ(r − r+ − ε) . (31)

In eq. (31), we have used eqs (26) and (29). To preserve the general invariance under
coordinate transformation, the third term in eq. (31) must vanish at the event horizon,
which leads to

aO = aH + 1

4π
Ã2

t (r+) + κ2

48π
, (32)
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where the surface gravity at horizon κ is given by κ2 = −48π Nr
t (r+) = f ′2/4. We once

again impose the covariant boundary condition that the flux for the energy–momentum
tensor vanishes at the horizon, namely, aH = 0. Then, the flux at infinity is evaluated as

aO = 1

4π
Ã2

t (r+) + κ2

48π
. (33)

By cancelling the covariant gauge and gravitational anomalies near the horizon, we
have obtained the gauge currents c(G)

O and c(R)
O and the flux of the energy–momentum ten-

sor aO. In fact, they are equal to the Hawking fluxes of electric charge, angular momentum
and energy–momentum tensor, respectively [3]. This means that Hawking temperature of
the 4D KK-AdS black hole can be derived via covariant anomalies.

4. Summary

In this paper, we have extended the anomaly cancellation method to compute the Hawk-
ing fluxes of 4D KK-AdS black holes. Considering a scalar quantum field to perform
dimension reduction to the 4D KK-AdS black hole (2), we found that the quantum field
in the original 4D KK-AdS black hole space-time can be effectively described by an
infinity collection of fields in the (1+1)-dimensional space-time with the metric (12) and
the U (1) gauge field (13) near the event horizon. In terms of both the 2D metric and
the gauge field, we derived the gauge currents c(G)

O and c(R)
O and the flux of the energy–

momentum tensor aO, by cancelling the covariant gauge and gravitational anomalies,
which correspond to the Hawking thermal fluxes of electric charge, angular momen-
tum and energy–momentum tensor, respectively. During our calculations, the quantum
anomalies and the boundary conditions localize at the event horizon. It implies that our
results support the universal view that Hawking radiation is a quantum phenomenon aris-
ing at the event horizon. By using the effective action approach in ref. [22] to compute
the Hawking fluxes of the 4D KK-AdS black hole on the basis of the 2D effective metric
(12) and gauge field (13), one can obtain the same results.
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