
PRAMANA c© Indian Academy of Sciences Vol. 80, No. 1
— journal of January 2013

physics pp. 61–68

Unpolarized coupled DGLAP evolution equation at small-x
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Abstract. In this paper, we have obtained the solution of the unpolarized coupled Dokshitzer–
Gribove–Lipatov–Alterelli–Parisi (DGLAP) evolution equation in leading order at the small-x limit.
Here, we have used a Taylor series expansion, separation of functions and then the method of
characteristics to solve the evolution equations. We have also calculated t-evolution of singlet and
gluon distribution functions and the results are compared with E665 and NNPDF data for singlet
structure function and GRV1998 and MRST2004 gluon parametrizations. It is shown that our
results are in good agreement with the parametrizations especially at small-x and high-Q2 region.
From global parametrizations and our results, we have seen that the singlet and gluon distribution
functions increase when Q2 increases for fixed values of x .
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1. Introduction

The internal structure of the hadrons, as probed in hard interactions, is determined
particularly in lepton nucleon scattering experiments in deep inelastic scattering (DIS)
process. The differential cross-section in terms of proton structure functions is given
by density functions for different partons, i.e., q(x , Q2) and g(x , Q2) for quarks and
gluons, where x is the Bjorken scaling and Q2 is the lepton four-momentum transfer.
These experiments provide an important testing ground for quantum chromodynamics
(QCD). The structure function F2(x , Q2) dominantly contributes to the cross-section,
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while the gluon density contribution comes from logarithmic Q2 dependence in pertur-
bative QCD (pQCD). In standard analysis of QCD over the DIS data, a parametrization
of the parton distribution functions at a starting scale Q0 is assumed, which is further
evolved to higher Q2 using the next-to-leading (NLO) Dokshitzer–Gribove–Lipatov–
Alterelli–Parisi (DGLAP) [1–4] equation. HERA’s striking discovery of the steep rise
in F2 at small x which is driven by g(x) has no agreed fundamental explanation. The
Q2 dependence of the data is well-described by DGLAP evolution equation without
further parameters at small-x , where αs ln(1/x) terms are neglected. Experimentally,
the rise towards small x was first observed in 1993 in the HERA data. Now, the
improved precision of the data allows detailed study of the rise. H1 and ZEUS [5–7]
have performed DGLAP-based (pQCD) analyses, which describe their data very well
and provide parton distribution functions including uncertainties. However, this rise
may be limited at very low-x by unitarity constraints. Perturbative quantum chromo-
dynamics (pQCD) provides a rigorous and successful theoretical description of the Q2

dependence of F2(x , Q2) in deep inelastic scattering. In the double asymptotic limit,
the DGLAP evolution equations can be solved and F2 is expected to rise approxi-
mately as a power of x towards low-x . The low-x behaviour of DGLAP evolution
equation for Q2 > 3 GeV2 is driven solely by the gluon field G(x , t), since quarks
to the scaling violations of F2(x , t) are negligible and gluons being the dominating
partons.

At small-x limit, the DGLAP evolution equation can be solved analytically [8–10] with
a Taylor approximated expansion of the structure functions for the parameter x and hence
obtain a general solution for them. The DGLAP evolution equations [10–12] for singlet
and gluon structure functions have the same form of derivative with respect to t in LO
(leading order). Since, at the small-x limit as mentioned earlier, gluons become the domi-
nating parton, the solution thus obtained is based on an assumption of the relation between
them, which makes it possible to obtain a solution for either singlet or gluon distribution
function.

Various analytical solutions of the DGLAP evolution equations have one common dis-
crepancy with their partial differential form, and hence their general solutions are not
unique. Using the method of characteristics, it can be overcome. The method of charac-
teristics [13–18] is an important technique for solving initial value problems of first-order
partial differential equation (PDE). It turns out that if we change coordinates from (x , t) to
suitable new coordinates (S, τ ), then the PDE becomes an ordinary differential equation
(ODE). Then, we can solve ODE by the standard method and obtain an exact solution.

In the present method, we have coupled the Taylor approximated form of both DGLAP
evolution equations for quark and gluon distribution functions in LO and then applied the
method of characteristic and finally used separation of variable to obtain a simultaneous
solution for them, instead of solving them separately as earlier. Also, in the present work,
we have not considered any such relation between singlet and gluon distribution functions
on ad hoc basis, but obtained general solution for the same compatibility parameter at a
time. We have compared our solution for the quark and singlet structure function with
experimental results; this provides a justification to the solutions we have obtained. The
result of the singlet structure functions are compared with E665 [19] and NNPDF [20,21]
parametrizations and gluon structure functions are compared with GRV98 [22,23] and
MRST 2001 [24] parametrizations.
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2. Theory

The gluon distribution g(x , Q2) is a part of the singlet densities
∑

(x, Q2) and remains
coupled with the singlet quark density as

∑
(x, Q2) =

N f∑

i=1

[qi(x, Q2) + q̄i (x, Q2)].

Here, x is the fractional momentum carried by the partons, Q2 is the energy imparted by
the lepton beam to the hadron and qi s are the valence quarks and antiquarks flavours.

The Mellin convolution [24,25] between two functions is given by

a (x) ⊗ b (x) =
∫ 1

x

dy

y
a (y)b

(
x

y

)

.

Using the above convolution, DGLAP evolution equation [1–4] can be written in
momentum space as

∂

∂ ln Q2

[ ∑
(x, Q2)

g(x, Q2)

]

= αS(Q2)

2π

∑

j

∫ 1

x

dξ

ξ

×

⎛

⎜
⎜
⎜
⎝

Pqi q j

(
x

ξ
, αS(Q2)

)

Pqi g

(
x

ξ
, αS(Q2)

)

Pgq j

(
x

ξ
, αS(Q2)

)

Pgg

(
x

ξ
, αS(Q2)

)

⎞

⎟
⎟
⎟
⎠

×
[ ∑

(ξ, Q2)

g(ξ, Q2)

]

, (1)

where αS(Q2) is the fine structure constant, Pi j are the splitting functions related to the
interaction between the partons, g(x, Q2) is the gluon density.

Splitting functions can be expanded in power series of αS(Q2) and is given by

Pi j

(
x

ξ
, αS(Q2)

)

=
(

αS(Q2)

2π

)

p0
i j

(
x

ξ

)

+
(

αS(Q2)

2π

)2

p1
i j

(
x

ξ

)

+
(

αS(Q2)

2π

)3

p2
i j

(
x

ξ

)

+ · · · , (2)

where p0
i j , p1

i j and p2
i j are the splitting functions of LO, NLO and NNLO, respectively.

After simplifying eq. (1), the singlet and gluon distribution functions using the LO
splitting function [16] can be written as

∂ F S
2 (x, t)

∂t
− Af

t

[{3 + 4 ln(1 − x)} F S
2 (x, t) + I S

1 (x, t) + I S
2 (x, t)

] = 0 (3)

∂G (x, t)

∂t
− αS

2π

2

3

[{
11

12
− Nf

18
+ ln (1 − x)

}

G(x, t) + IG

]

= 0, (4)
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where F S
2 (x, t) and G(x , t) are the singlet and gluon distribution functions, respectively,

and t = ln(Q2/�2), � is the QCD cut-off parameter. Here Af =36/(33 − Nf) where Nf is
the number of flavours and

I S
1 (x, t) = 2

∫ 1

x

dω

1 − ω

[
(1 + ω2)F S

2

( x

ω
, t

)
− 2F S

2 (x, t)
]
, (5a)

I S
2 (x, t) = 2Nf

∫ 1

x

{
ω2 + (1 − ω)2

}
G

( x

ω
, t

)
dω, (5b)

IG (x, t) =
∫ 1

x
dω

[
ωG ((x/ω) , t) − G(x, t)

1 − ω

+
{

ω (1 − ω) + 1 − ω

ω

}

G
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ω
, t

)

+ 2

9

(
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ω

)

F S
2

( x

ω
, t

)
]

. (6)

Now, let us introduce a variable u = 1−ω, and since x < ω < 1, we have 0 < u < 1− x ;
hence the series is convergent for |u| < 1 and we can use Taylor’s expansion series [26]

F S
2

( x

ω
, t

)
= F S

2

(

x + xu

1 − u
, t

)

= F S
2 (x, t) + xu

1 − u

∂ F S
2 (x, t)

∂x
+ 1

2

(
xu

1 − u

)2
∂2 F S

2 (x, t)

∂x2
+· · · .

Since x is small in our region of discussion, the terms containing x2 can be neglected. So,
we can write,

F S
2

( x

ω
, t

)
≈ F S

2 (x, t) + xu

1 − u

∂ F S
2 (x, t)

∂x
. (7)

Similarly for gluon, we can write

G(x, t) ≈ G(x, t) + xu

1 − u

∂G(x, t)

∂x
. (8)

Using the relation from eq. (7) in eqs (5a) and (5b) and eq. (8) in eq. (6) and finally
performing u-integration, we get eqs (3) and (4) in the following forms respectively:

t
∂ F S

2 (x, t)

∂t
− Af B(x)

t

∂ F S
2 (x, t)

∂x
− Af D(x)

t

∂G(x, t)

∂x

= Af A(x)

t
F S

2 (x, t) + AfC(x)

T
G(x, t) (9a)

t
∂G(x, t)

∂t
− Af Ag

2(x)

t

∂G(x, t)

∂x
− Af Ag

4(x)

t

∂ F S
2 (x, t)

∂x

= Af Ag
3(x)

t
F S

2 (x, t) + Af Ag
1(x)

t
G(x, t) , (9b)
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where A(x), B(x), C(x), D(x), Ag
2(x), Ag

3(x) and Ag
4(x) are functions of x .

Summing up the left-hand side and right-hand side of eqs (9a) and (9b), we get as
follows:

∂ F S
2 (x, t)

∂t
−

(
Af B(x)

t
+ Af Ag

4(x)

t

)
∂ F S

2 (x, t)

∂x
+ ∂G(x, t)

∂t

−
(

Af D(x)

t
+ Af Ag

2(x)

t

)
∂G(x, t)

∂x

=
(

Af A(x)

t
+ Af Ag

3(x)

t

)

F S
2 (x, t)

+
(

AfC(x)

t
+ Af Ag

1(x)

t

)

G(x, t) . (10)

Now, separating the singlet and gluon terms from both sides of eq. (10), we get

− t
∂ F S

2 (x, t)

∂t
+ Af(B(x) + Ag

4(x))
∂ F S

2 (x, t)

∂x
+ Af(A(x) + Ag

3(x))F S
2 (x, t)

= t
G(x, t)

∂t
− Af(D(x) + Ag

2(x))
∂G(x, t)

∂x
− Af(C(x) + Ag

1(x))G(x, t) = m (say) , (11)

where m may be a constant or functions of x .
To introduce the method of characteristics [13–18], let us consider two new variables

S and τ instead of x and t such that,

dt

dS
= −t and

dx

dS
= Af(B(x) + Ag

4(x)). (12a, b)

This leads to the left-hand side of eq. (11) in the following form:

dF S
2 (S, τ )

dS
+ Af(A(x) + Ag

3(x))F S
2 (S, τ ) = m. (13)

Now eq. (13) can be solved with initial condition, F S
2 (S, τ ) = F S

2 (τ ), such that S = 0,
t = t0. Using the relation (12a) and replacing the coordinate system (S, τ ) to (x , t) with
input function F S

2 (τ ) = F S
2 (x, t0), we shall get the t-evolution of the singlet structure

function in LO as

F S
2 (x, t) = m

Af(A(x) + Ag
3(x))

+
{

F S
2 (x, t0) − m

Af(A(x) + Ag
3(x))

}(
t

t0

)Af(A(x)+Ag
3 (x))

. (14)

Similarly for gluon, from the right-hand side of eq. (11), we get the t-evolution of gluon
structure function in LO as,

G(x, t) = −m

Af(C(x) + Ag
1(x))

+
{

G(x, t0) + m

Af(C(x) + Ag
1(x))

} (
t

t0

)Af(C(x)+Ag
1(x))

. (15)
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The deuteron structure function in DIS can be written in terms of singlet as,

Fd
2 (x, t) = 5

2
F S

2 (x, t) . (16)

3. Results and discussions

In figures 1a and b, we have compared our result for t-evolution of deuteron structure
function in LO, from eq. (16), with the measured data of Fermilab E665 [19] Collabo-
ration on deep inelastic muon scattering having a average beam energy 470 GeV2. The
QCD cut-off parameter [19] for the fit is �(Nf = 4) = 250 MeV.

The red marks represent experimental data and red line shows our matching. Error bar
shows the total combined statistical and systematic uncertainty. Figures 1a and b show the
best fit at x = 0.035 and x = 0.069 having 3.82 < Q2 (GeV2) < 13.39 and 9.79 < Q2

(GeV2) < 34.277, respectively for a given separation constant. It is evident from the
figure that the steepest rise of the structure function with increasing Q2 gets a better fit at
x = 0.035, as compared to x = 0.069.

We have also compared the t-evolution of deuteron structure function in LO with
NNPDF [20] parametrization. The NNPDF group parametrizes the DIS data of struc-
ture functions without any theoretical bias by neural network interpolation with existing
data points. This unbiased interpolation provides a measure for all points within a
range of x and Q2, where the sampling provided by the data is fine enough. To obtain
the deuteron structure function, NNPDF [21] group used the NMC Collaboration and
BCDMS Collaboration data of deuteron structure function for parametrization.

Figures 2c and d show the comparison of our result with the experimental data for a best
fit at x = 0.01 and x = 0.05 having 10 ≤ Q2(GeV2) ≤ 50. Here also, the comparison
shows a better fit at smaller-x .

We have also compared the result of gluon structure function from eq. (15) with GRV98
[22,23] and MRST2001 [24] parametrizations (figure 3).

We consider GRV1998 parametrization for x = 10−5 and 20 ≤ Q2 ≤ 90 GeV2, where
they used H1 [13] and ZEUS [14] high precision data on G(x , Q2). We have taken
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Figure 1. t-evolution of deuteron structure function in LO, compared with E665 data
at (a) x = 0.035 and (b) x = 0.069, respectively, for m = constant = 0.001.
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Figure 2. t-evolution of deuteron structure function in LO compared with NNPDF at
(a) x = 0.01 and (b) x = 0.05 having m = 0.001.
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Figure 3. t-evolution of gluon structure function in LO compared with GRV98 and
MRST2001 parameterizations for (a) x = 0.00001 and (b) x = 0.1 having m =
0.001.

MRST2001 fit [24] to initial Q2 = 4 GeV2 for 2 ≤ Q2 ≤ 100 GeV2 at x = 0.1. It seems
that the singlet and gluon structure functions are increasing with increase in energy trans-
ferred Q2, for a given initial value. The figures show a comparison of the parametrizations
with our results.

4. Conclusion

Here, we have shown an analytical approach to get a simultaneous solution for quark and
gluon structure function in LO for a given input parameter. Using Taylor approximation,
we provided the structure functions, a very good phenomenology with the experimental
results at low-x . The comparison of our results with E665 and NNPDF data shows a
good agreement with experiment as well as a better fit at lower x values between two
different values of x for a given parametrization. Gluon structure functions obtained are
also in good agreement with experimental data. Structure functions mainly contain the
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LO contributions. Higher order contributions from NLO and NNLO are much smaller
compared to LO. Though complex, it is also possible to obtain the structure functions
for higher orders NLO and NNLO using the same method. As we obtain the solution by
separating the LO expression for singlet and gluon structure functions for a given input
parameter, it can be anticipated that the same approach provides a better agreement for
higher order twist with experimental data. Though there are various methods to solve the
DGLAP evolution equation to calculate quark and gluon structure functions, our method
to obtain a simultaneous solution as characteristics of a given input parameter is also a
viable alternative.
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