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SUSY formalism for the symmetric double well potential
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Abstract. Using first- and second-order supersymmetric Darboüx formalism and starting with
symmetric double well potential barrier we have obtained a class of exactly solvable potentials
subject to moving boundary condition. The eigenstates are also obtained by the same technique.
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1. Introduction

Exactly solvable potentials (here by the terminology ‘exactly solvable’ we mean that the
eigenstates for the potential can be given in closed form) are very few in number in quan-
tum mechanics [1–3]. So, it is always interesting to construct some exactly solvable
potentials. Supersymmetric (SUSY) Darboüx method [1,4,5] is one of the elegant meth-
ods to construct integrable (exactly solvable) potentials. In SUSY quantum mechanics
one has to start with a known potential and its eigenstates (the seed solutions) and follow-
ing a very much well-defined route several exactly solvable potentials can be obtained.
Various work has been done to construct the integrable potentials by SUSY Darboüx for-
malism. If the boundary conditions are time-dependent, complication increases (for a
general treatment for SUSY quantum mechanics in time-dependent boundary condition,
see [1] and the references therein).

In this paper, starting with the symmetric double well potential [2,3,6] under time-
dependent boundary condition, we have obtained a class of exactly solvable potentials
under time-dependent boundary condition. The reason behind choosing the double well
potential is the following. For the specific tetrahedron structure of NH3 molecule [7],
the plane formed by three hydrogen atoms can be moved continuously from one side
to the other side (because of quantum tunnelling effect [2,3,6,8,9]) of nitrogen atom
with some definite frequency, called inversion frequency [3,8,9], it can absorb or emit
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the electromagnetic radiation of frequency equal to its inversion frequency [3,8,9] and
this phenomenon is used in maser theory [9,10], radioastronomy [9–11] and many other
branches [3,11]. Much work have been done by many authors [2,3,6–10] to determine
the eigenstates and eigenvalues of NH3 molecule. In many of the cases the symmetric
double well potential [2,3,12] with time-independent boundary condition is used as the
approximation of the potential of that system [13] and this simplified model successfully
describes the existence of the inversion frequency of NH3 molecule.

The organization of the article is as follows. Section 2 describes about the SUSY
formalism in moving boundary case. Then the exactly solvable potentials obtained are
given along with their eignestates.

2. Solvability of Schödinger equation in moving boundary case and SUSY formalism

To solve the problem for the moving boundary condition, one usually transform it to
the fixed boundary problem by redefining the variables and solve the system for fixed
boundary case and then easily transform the solutions for the moving boundary case [1].

To solve the time-dependent Schrödinger equation[
− ∂2

∂x2
+ V (x, t)

]
ψ(x, t) = i

∂

∂t
ψ(x, t) (1)

with the moving boundary condition

ψ(0, t) = 0, ψ(L(t), t) = 0 (2)

if we transform it in fixed boundary problem as q = x/L(t) and transform the wave
function as ψ(q, t) �−→ eφ(q,t)χ(q, t), then for the potential V (q, t) = g(t)Ṽ (q) +
U (q, t)+ g0(t) the condition to apply the separation of variable technique to solve eq. (1)
yields the following conditions [4]:

φ(q, t) = a(t)
q2

2
+ b(q) + c(t), where a(t) = i

2
L̈(t)L(t). (3)

If we choose b(q) = 0 and c(t) = −i
∫ t

0 g0(s) − 1
2 log L(t) and if we use χ(q, t) =

Q(q)T (t); then we obtain g(t) = 1/L(t) and T (t) = e−iετ(t), where τ(t) =∫ t
0 (1/L2(s))ds. If we choose U (q, t) = − 1

4 L(t)L̈(t)q2, then we can easily obtain the
solutions for the moving boundary case by reusing q = x/L(t).

Now, once we have a potential and its eigenstates by applying Darboüx transformation
we can generate new types of potentials along with their eigenstates. The Darboüx trans-
formation [5,14,15] method is based on the existence of an operator L and its adjoint L†

which act as transformation operators between a pair of self-adjoint Hamiltonians H and
H̃ [15] and they are intertwined through L H = H̃ L ⇒ H L† = L† H . For first-order
SUSY,

L = d

dq
+ w(q).

So

L† = − d

dq
+ w(q)
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w(q) being the superpotential. If

H = − ∂2

∂q2
+ V (q)

then V and Ṽ can be expressed as

V (q) = w2(q) − dw

dq
, Ṽ (q) = w2(q) + dw

dq
.

H and H̃ are iso-spectral except possibly for the ground state (ground state admits
normalization problem; as for the first-order transformation L is something like the gen-
eralization of famous annihilation or creation operator for the angular momentum algebra
or for the harmonic oscillator; this is not so much surprising) [1,5], and in second-order
SUSY

L j, j+1 = d2

dq2
+ β j (q)

d

dq
+ γ (β j ).

So,

L†
j, j+1 = d2

dq2
− β j

d

dq
+ γ (−β j ),

where

β j (q) = − d

dq
log W j, j+1(x)

and

γ (β j ) = − β ′′
j

2β j
+

(
β ′

j

2β j

)2

+ β ′
j

2
+ β2

j

4
−

(
ε j+1 − ε j

2β j

)2

ε j being the energy eigenvalue for the j th level. So the obtained potential [1,4,5] is

V (q) = V0(q) − 2
d2

dq2
log W j, j+1(q),

W j, j+1(q) = Q0
j Q0′

j+1 − Q0′
j Q0

j+1 (4)

and the wave functions

Qk(q) = 1

W j, j+1
(q) det

⎡
⎢⎢⎣

Q0
j Q0

j+1 Q0
k

Q0′
j Q0′

j+1 Q0′
k

Q0′′
j Q0′′

j+1 Q0′′
k

⎤
⎥⎥⎦ , j, j + 1 �= k. (5)

First we note that for the approximate version of the potential of NH3 molecule, i.e.,
symmetric double well potential barrier

V (q) = V 2
0 at −

(
b − a

2

)
≤ q ≤

(
b − a

2

)
= ∞ at q = ±b (6)

= 0 otherwise.
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The eigenstates are

Q0
k(q) = sin

[
k

(
b + a

2
− q

)]
, if b − a

2
≤ q ≤ b + a

2

= sin
[
k

(
b + a

2
+ q

)]
, if b − a

2
≤ −q ≤ b + a

2
(7)

= cosh[αsq], if −
(

b − a

2

)
≤ q ≤ b − a

2
(symmetric case)

= sinh[αaq], if −
(

b − a

2

)
≤ q ≤ b − a

2
(antisymmetric case)

with the corresponding eigenvalues Es,a = h2k2
s,a/2m, where ks,a is to be determined

from the solutions of the following transidental equation:

tan(ksa) = − ks√
α2 − k2

s

coth

[√
α2 − k2

s

(
b − a

2

)]

tan(kaa) = − ka√
α2 − k2

a

tanh

[√
α2 − k2

a

(
b − a

2

)]
, α2 = 2mV0

h̄2 (8)

which have countable number of solutions which confirms the energy quantization for the
system and that is why we can safely use the index k, k + j ( j ∈ ℵ) to denote the various
energy levels and the index s and a are for symmetric and antisymmetric respectively.
Now we can easily construct the new types of potentials using SUSY.

3. New potentials by SUSY

One should usually start with the superpotential and can obtain new types of exactly
solvable potentials. For our case we start with the superpotential

w(q) = −V0 coth(V0q) at −
(

b − a

2

)
≤ q ≤

(
b − a

2

)
= ∞ at q = ±b (9)

= 0 otherwise.

The corresponding partner potentials

V (q) = w2(q) − dw

dq

and

Ṽ (q) = w2(q) + dw

dq

are the following:

V (q) = V 2
0 at −

(
b − a

2

)
≤ q ≤

(
b − a

2

)
= ∞ at q = ±b (10)

= 0 otherwise.
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Ṽ (q) = V 2
0 [1 + 2 cosech2(V0q)] at −

(
b − a

2

)
≤ q ≤

(
b − a

2

)
= ∞ at q = ±b (11)

= 0 otherwise.

Using eqs (3) and (4) we now can construct new solvable potentials along with their
eigenstates under moving boundary conditions are given by

V (x, t) = − L̈(t)

L(t)
x2, for reg(1)

= − L̈(t)

L(t)
x2, for reg(2)

= V 2
0

(
1 + 2 cosech2 (V0x/L(t))

)
L2(t)

− L̈(t)

L(t)
x2, for reg(3). (12)

For the sake of simplicity we denote b− a
2 ≤ q ≤ b+ a

2 as region (1), b− a
2 ≤ −q ≤ b+ a

2
as region (2) and −(b − a

2 ) ≤ q ≤ b − a
2 as region (3), and the corresponding eigenstates

are:
For regions (1) and (2):

ψ(x, t) = ∓ k + 1√
L(t)

exp(θ(x, t)) cos [(k + 1)X∓] .

For region (3) and for symmetric condition:

ψ(x, t) = 1√
L(t)

exp(θ(x, t))

×
[

L(t)

x
αs−sinh αs− − V0 coth

(
V0x

L

)
cosh αs−

]
. (13)

For region (3) and for antisymmetric condition:

ψ(x, t) = 1√
L(t)

exp(θ(x, t))

×
[

L(t)

x
αa+cosh αa+ − V0 coth

(
V0x

L

)
sinh αa+

]
, (14)

where

θ(x, t) =
(

i L̇(t)

4L(t)
x2 − iετ

)
,

αs− =
√

x2

L2

(
V0 − (ks + 1)2

)
,

αa+ =
√

x2

L2
(V0 − (ka + 1)2), X∓ =

(
b + a

2
∓ x

L

)
.
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And for the second-order Darboüx if one is equipped with the form of γ (β), then easily
new types of potentials can be written. As their expressions are slightly tedious, the γ are
given in the Appendix.

In this section the potentials for only the special case j = 1 and the corresponding
eigenstates are given.

For j = 1 the obtained potential is

V2(x, t) = 1

L2(t)

[
V 2

0 + 6 cosec2 X∓
] − L̈(t)

4L(t)
x2. (15)

∓ for region (1) and region (2) respectively, and the corresponding eigenstates are

ψ
0,2
k (x, t) = 1√

L
exp(θ(x, t))[−k2 sin k X− − 3k cot X− cos k X−

+ sin k X−(1 + 3 cot2 X−)], for region (1) (16)

and

ψ
0,2
k (x, t) = 1√

L
exp(θ(x, t))[−k2 sin k X+ − 3k cot X+ cos k X+

+ sin X+(1 + 3 cot2 X+)], for region(2). (17)

For region (3) and for symmetric condition:

V2(x, t) = −3

L2(t)�s
[(V0 − 1)(cosh 2As − cosh 2Cs) − 6 cosh2 As]

− L̈(t)

4L(t)
x2 (18)

and the corresponding eigenstates:

ψ
0,2
k (x, t) = 1

�s

√
L

[αs+1αsk cosh As(α1s sinh D1s − α2s sinh D2s)

+ αsk αs cos Cs(α3s sinh D3s − α4s sinh D4s)

+ αsαs+1 cosh Bs(α5s sinh D5s − α6s sinh D6s)], (19)

where

αsk =
√

(V0 − k2
s ); As = αs

x

L
; Bs = αsk

x

L
; Cs = αs+1

x

L
;

D1s = Bs + Cs; D2s = Bs − Cs; D3s = As + Bs; D4s = As − Bs;
D5s = Cs + As; D6s = Cs − As; α1s = αsk

2
− αs+1

2
;
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α2s = αsk

2
+ αs+1

2
; α3s = αs

2
− αsk

2
; α4s = αs

2
+ αsk

2
;

α5s = αs+1

2
− αs

2
; α6s = αs+1

2
+ αs

2
;

�s = [
αs+1cosh As sinh Cs − αs cosh Cs sinh As

]2;
αs = √

V0 − 1; αs+1 = √
V0 − 4.

For region (3) and for antisymmetric condition:

V2(x, t) = 3

L2(t)�a
[(V0 − 1)(cosh 2Aa − cosh 2Ca) − 6 sinh2 Aa]

− L̈(t)

4L(t)
x2 (20)

and the corresponding eigenstates

ψ
0,2
k (x, t) = 1

�a

√
L

[αa+1αak sinh Aa(α1a sinh D1a − α2a sinh D2a)

+ αak αa sinh Ca(α3a sinh D3a − α4a sinh D4a)

+ αaαa+1 sinh Ba(α5a sinh D5a − α6a sinh D6a)], (21)

where

αak =
√

(V0 − k2
a ); Aa = αa

x

L
; Ba = αak

x

L
; Ca = αa+1

x

L
;

D1a = Ba + Ca; D2a = Ba − Ca; D3a = Aa+Ba;
D4a = Aa − Ba; D5a = Ca + Aa; D6a = Ca − Aa;
α1a = αak

2
− αa+1

2
; α2a = αak

2
+ αa+1

2
; α3a = αa

2
− αak

2
;

α4a = αa

2
+ αak

2
; α5a = αa+1

2
− αa

2
; α6a = αa+1

2
+ αa

2
;

�a = [
αa+1 sinh Aa cosh Ca − αa sinh Ca cosh Aa

]2 ;

αa = √
V0 − 1; αa+1 = √

V0 − 4.

It can be checked straightforwardly whether the obtained eigenstates indeed satisfy the
eigenvalue equation for the corresponding potential.
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4. Conclusion

Applying first- and second-order SUSY formalism to the symmetric double well potential
barrier we have obtained a class of exactly solvable potentials with moving right boundary.
Also, one can easily realize that after applying first-order Darboüx transformation, the
symmetric eigenstates transform into antisymmetric eigenstates and vice-versa and this
is expected as the transformation operator can be considered as the generalization of the
well-known annihilation and creation operators. As our starting potential is the same as
that of the simplified toy model of the potential in NH3 molecule (the only difference is
that the boundary condition we have used is time-dependent) we hope that the obtained
potential may be helpful to describe the NH3 molecule.
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Appendix

In general, the form of γ (β) are:

γ (β) = 1

4
cot2 p − j sin p cot( j + 1)p

sin j p

[
1 − j sin p

sin j p sin 2( j + 1p)

]

+ 1

[ j sin p − sin j p cos( j + 1)p]2

×
[

j sin j p + j

2
sin2 j p − j2

4
(1 + 12 j) sin p sin(2 j + 1)p

+
(

j2 + j + 1

4

)
sin2 j p

sin2( j + 1)p

+
(

j2 + 1

4

)
sin2 j p sin2( j + 1)p + j sin2 j p sin2(2 j + 1)p

+ j2 cos j p

sin( j + 1)p
(sin p − sin j p) + j4 sinp cos(2 j + 1)p

sin j p sin( j + 1)p

×
[

1 + tan(2 j + 1)p sin(2 j + 1)p

4 sin j p sin( j + 1)p

]]
(22)
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for regions (1) and (2) and

γ (β) = 1


s

[
3

2
α2

s α
2
s+1 + 2αsαs+1 tanh As tanh Cs(α

2
s+1 sinh As cosh As

− α2
s sinh Cs cosh Cs) − (α4

s+1 cosh2 As + α4
s cosh2 Cs)

+ 1

4
cosh2 Cs sech2 As + 1

4
cosh2 As sech2 Cs

×
(

js + 1

2

)
(α2

s cosh2 Cs − α2
s+1 cosh2 As)

+ (2 js + 1)2

4
cosh2 As cosh2 Cs

]

− 1

4
(α2

s+1 tanh2 Cs + α2
s tanh2 As − 2αsαs+1 tanh As tanh Cs) (23)

for region (3) and symmetric case. Here 
s = [αs+1 cosh As sinh Cs −αs cosh Cs sinh As].
For region (3) and antisymmetric case

γ (β) = 1


a

[
2α2

a α
2
a+1

− αaαa+1 coth Aa coth Ca(α
2
a+1 sinh2 Aa + α2

a sinh2 Ca)

+ α4 sinh2 Aa + α4 sinh2 Aa × α2
a+1

4
sinh Aa cosech Ca

− α2
a

4
sinh Ca cosech Aa +

(
ja + 1

2

)
(α2

a+1 sinh2 Aa

− α2
a sinh2 Ca)

(
ja + 1

2

)2

sinh2 Aa sinh2 Ca

]

−
(

α2a + 1

4
coth2 Ca + α2

a

4
coth2 Aa − 2αaαa+1 coth Aa coth Ca

)
,

(24)

where 
a = (αa+1 sinh Aa cosh Ca − αa cosh Aa sinh Ca)
2α.
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