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Abstract. This paper investigates the generalized projective synchronization in general
autonomous chaotic system. A universal controller is designed and the effectiveness is verified
via theoretical analysis and numerical simulations. The controller design is irrelevant to concrete
system structure and initial values. It has strong robustness and broad application perspective.
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1. Introduction

Chaos synchronization has been intensively studied since 1990. Various schemes of syn-
chrony, such as complete synchronization [1], generalized synchronization [2], phase
synchronization [3,4] and lag synchronization [5], have been studied. In recent years,
projective synchronization has attracted a great deal of attention and it has been exten-
sively investigated. However, the scaling factor is unpredictable [6], because it depends
on both initial condition and the structure of specific chaotic system. This is inconvenient
in real application. There are many works which study how to identify the scaling factor,
e.g. Chee proposed a control algorithm based on Schur-Chon stability criteria to direct
the scaling factor onto a predestined value in lower dimensional discrete-time systems [7].
Hu et al [8] realized the desired projective synchronization by introducing improved con-
trol scheme. In ref. [9], pinning control techniques were also adopted to direct the scaling
factor onto the desired value. Many other methods can be found in refs [10–16]. However,
all these works are limited only to partially linear systems, and practically there are many
limitations. In this paper, a generalized projective self-synchronization of autonomous
chaotic system was investigated, and a corresponding universal controller was designed,
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and the validity of our method was verified through theoretical analysis and numerical
simulations.

2. Generalized projective synchronization controller design

Consider a general autonomous system:

Ẋ = AX + B. (1)

Here X = [x1, x1, . . . , xn]T is the state vector of the drive system, B is a n × 1 constant
vector, and A is a n × n square matrix:

A =
⎛
⎜⎝

a11(X) . . . a1n(X)
...

. . .
...

an1(X) · · · ann(X)

⎞
⎟⎠ .

Here, ai j (X) is a function of X. For simplicity, we write ai j (X) as ai j . So, the matrix A
can be represented as follows:

A =
⎛
⎜⎝

a11 . . . a1n
...

. . .
...

an1 · · · ann

⎞
⎟⎠ .

Let eq. (1) be a drive system, with the corresponding response system as follows:

Ẋ′ = A′X′ + U + B, (2)

where X′ = [x ′
1, x ′

1, . . . , x ′
n]T is the state vector of the response system, A′ is a n × n

square matrix:

A′ =
⎛
⎜⎝

a′
11(X

′) . . . a′
1n(X

′)
...

. . .
...

a′
n1(X

′) · · · a′
nn(X

′)

⎞
⎟⎠ .

Here, a′
i j (X

′) is a function of X′. For simplicity, we rewrite A′ as follows:

A′ =
⎛
⎜⎝

a′
11 . . . a′

1n
...

. . .
...

a′
n1 · · · a′

nn

⎞
⎟⎠ .

Here, A′ is not the transfer of A. B is a n × 1 constant vector, and U = (u1, u2, . . . , un)
T ∈

Rn is the projective synchronization controller which we want to design.
However, what form is the controller U? First, let us analyse what conditions should be

satisfied when systems (1) and (2) achieve generalized projective synchronization.
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Define the error function as follows:

e = X − βTIX′, (3)

where I is the n × n unit matrix, e = [e1, e2, . . . , en]T is the error vector, β =
[β1, β2, . . . , βn]T is the scaling factor vector, ei = xi − βi x ′

i . From eqs (1) and (2),
the corresponding error dynamical system is as follows:

ė = Ẋ − βTIẊ′ = AX + B − βTI(A′X′ + B + U). (4)

To enable systems (1) and (2) to achieve the generalized projective synchronization, in the
course of evolution, eq. (3) must be convergent. Choose Lyapunov function as follows:

V = 1

2
eTe = 1

2

n∑
i=1

e2
i . (5)

According to Lyapunov stability principle, the time derivation along the system evolution
trajectory V̇ should be less than zero, that is,

V̇ =
n∑

i=1

ei ėi < 0. (6)

Let ėi = −ei , thus

V̇ =
n∑

i=1

ei ėi = −
n∑

i=1

e2
i < 0. (7)

Obviously, the result is what we want. So, let

ėi = −ei (8)

and substituting eq. (4) into eq. (8), we obtain

AX + B − βTI(A′X′ + B + U) = −e.

By simplifying it, we can obtain

βTIU = AX + B − βTI(A′X′ + B) + e. (9)

According to eq. (9),

ui = 1

βi

⎡
⎣

n∑
j=1

(
ai j x j − βi a

′
i j x

′
j

) + (1 − βi ) bi + ei

⎤
⎦ , i = 1, 2, ..., n.

(10)

Equation (10) is the controller we want to design. Reversing the above analysis process
can prove that the controller (10) enables the response system (2) and the drive system
(1) to asymptotically achieve generalized projective synchronization with scaling factor
vector β.
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From above, we can see that the β is “arbitrary”. In other words, it is not dependent on
the initial values. This point was also verified by the following numerical simulations.

3. Numerical simulation

In order to verify the validity of the above-mentioned method, numerical simulations are
given respectively for Lorenz system and the Rössler system.

According to the drive system (1) and the response system (2), for Rössler system, thus,

A =
⎛
⎝

0 −1 −1
1 a 0
x3 0 −c

⎞
⎠ , A′ =

⎛
⎝

0 −1 −1
1 a 0
x ′

3 0 −c

⎞
⎠ , B =

⎛
⎝

0
0
b

⎞
⎠ .

Here, a = 0.2, b = 0.2, c = 5.7. According to eq. (10), we can obtain the following
controller as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u1 = 1

β1
[β1(x ′

3 + x ′
2) − (x1 + x2) + e1]

u2 = 1

β2
[−β2(x ′

1 + ax ′
2) + (x1 + ax2) + e2]

u3 = 1

β3
[−β3(x ′

3x ′
1 − cx ′

3 + b) + x3 (x1 − c) + e3]

. (11)

Now consider Lorenz system as

A =
⎛
⎝

−a a 0
r −1 −x1

x2 0 −b

⎞
⎠ , A′ =

⎛
⎝

−a a 0
r −1 −x ′

1
x ′

2 0 −b

⎞
⎠ , B =

⎛
⎝

0
0
0

⎞
⎠ ,

where a = 10, b = 8/3, r = 28. According to eq. (10), we can obtain the following
controller as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u1 = 1

β1
[ax2 − ax1 − β1(ax ′

2 − ax ′) + e1]

u2 = 1

β2
[r x1 − x2 − x1x3 − β2(r x ′

1 − x ′
2 − x ′

1x ′
3) + e2]

u3 = 1

β3
[x1x2 − bx3 − β3(x ′

2x ′
1 − bx ′

3) + e3]

. (12)

For Lorenz system, let

β =
⎛
⎝

1
2
3

⎞
⎠ ,

and for Rössler system, let

β =
⎛
⎝

2
0.5
1.5

⎞
⎠ .
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For both Lorenz system and Rössler system, let the initial value of the drive system and
the response system respectively be

X = [0.05, 0.05, 0.05]T, X′ = [0.2, 0.2, 0.2]T.

Solving these two systems using fourth-order Runge–Kutta method, when the drive sys-
tem and the response system achieve generalized projective self-synchronization, for
Lorenz and Rössler systems, the attractor’s projections on two-dimensional plane are
given respectively as figures 1 and 2 (note: for the sake of clarity, in Lorenz system,
the projections of the response system are moved down with 20 units, namely, in fig-
ures 1a, 1b and 1c, the projections of the response system are moved 20 units along the
negative y-axis, the negative z-axis and the negative z-axis respectively, and in Rössler
system, the projections of the response system are moved right with 15 units. That is, in
figures 2a, 2b and 2c, the projections of the response system are moved 15 units along the

(b)(a)

(c)

Figure 1. Lorenz system’s projection after projective synchronization. (a) Projection
on the plane of x–y, (b) projection on the plane of x–z, (c) projection on the plane
of y–z.
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(a) (b)

(c)

Figure 2. Error evolution of Lorenz system projective synchronization. (a) Evolution
of e1, (b) evolution of e2 and (c) evolution of e3.

positive x-axis, the positive x-axis and the positive y-axis respectively). In figure 1, when
the Lorenz system achieves generalized projective self-synchronization, the scaling factor
along the x-axis, y-axis and z-axis is 1, 2 and 3 respectively, and in figure 3, when the
Rössler system achieves generalized projective self-synchronization, the scaling factor
along the x-axis, y-axis and z-axis is 2, 0.5 and 1.5 respectively. As a result of using three
different scaling factors in different directions, we observe that the attractor projections
of the response system are deformed to some extent.

The comparison of error evaluation before and after achieving generalized projective
self-synchronization are given in figures 3 and 4, respectively for Lorenz system and
Rössler system. The fourth-order Runge–Kutta method is employed to solve the error
evaluation of dynamical system (4) with time step �t = 0.0005 s. For both Lorenz and
Rössler systems, the initial conditions of the drive system and the response system are
respectively (0.05, 0.05, 0.05) and (0.2, 0.2, 0.2). The control is activated at t = 10 s.
We can observe from figures 3 and 4 that before activate control (corresponding to the

1380 Pramana – J. Phys., Vol. 79, No. 6, December 2012



Universal projective synchronization

(a) (b)

(c)

Figure 3. Rössler’s projection after projective synchronization. (a) Projection on
the plane of x–y, (b) projection on the plane of x–z and (c) projection on the plane
of y–z.

time interval of 0–10 s in figures 3 and 4), the error jumps up and down occasionally
with the passage of time. This characterizes the phenomenon of ‘extension’ and ‘folding’
in chaos, as well as sensitive dependence on initial conditions. After activate control
(corresponding to the time interval of 10–18 s in figures 3 and 4), we can observe that the
three errors along the x-, y- and z-axes quickly stabilize near zero, and this shows that the
Lorenz and Rössler systems reached a generalized projective self-synchronization.

Choose a different scaling factor vector β. Here, β1, β2 and β3 were randomly selected
from (0,10], and by the numerical simulation of the Lorenz and Rössler systems, we
obtain results similar to the above results. This indicates that the shortcoming of scaling
factor depending on initial condition has been overcome. In this paper, three different
scaling factors are chosen for Lorenz and Rössler systems under different initial con-
ditions, and from figures 3 and 4, we observe that both give good results. This shows
that our method breaks the limitation that the same scaling factor is needed in projective
synchronization. In addition, in this paper, obviously, the limitation of partially linear
system is not emphasized, as well as other constraint conditions are not mentioned. Our
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(a) (b)

(c)

Figure 4. Error evolution of Rössler system projective synchronization. (a) Evolution
of e1, (b) evolution of e2 and (c) evolution of e3.

method aims at general autonomous system. Numerical simulation results show that by
employing our method to different Lorenz and Rössler systems, both acquire satisfactory
generalized projective synchronization. It shows our method is effective and has broad
application perspectives.

4. Conclusion

This paper investigates the generalized projective synchronization in the general
autonomous chaotic system. A generalized controller was designed, and the effective-
ness was verified by theoretical analysis. The numerical simulations in different nonlinear
autonomous chaotic system indicate that this method is robust. This controller does not
depend either on initial conditions or on the structure of specific coupling system. It has
good robustness and broad application perspective.
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