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The pion form factor from analyticity and unitarity
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Abstract. Analyticity and unitarity techniques are employed to estimate Taylor coefficients of the
pion electromagnetic form factor at t = 0 by exploiting the recently evaluated two-pion contribution
to the muon (g − 2) and the phase of the pion electromagnetic form factor in the elastic region,
known from ππ scattering by Fermi–Watson theorem and the values of the form factor at several
points in the space-like region. Regions in the complex t-plane are isolated where the form factor
cannot have zeros.
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1. Introduction

The pion electromagnetic form factor Fπ (t) is an important object to account for a vari-
ety of phenomena in strong interaction dynamics. Fπ (t) is a real analytic function in the
t-plane cut along the real axis from the unitarity threshold t+ = 4M2

π to ∞ and is nor-
malized to Fπ (0) = 1. The values of Fπ (t) have been measured recently with increasing
precision at space-like values Q2 > 0 [1]. On the time-like cut, where the form fac-
tor is complex, the Fermi–Watson theorem implies that in the elastic region, its phase
is equal to the phase-shift of the P-wave of the ππ amplitude, calculated recently with
precision using Roy equations and fixed-t dispersion relations. On the other hand, the
modulus has been measured from the cross-section of e+e− → π+π− to high accuracy
by the BABAR and KLOE Collaborations (for references, see ref. [2]). These data have
been used for an accurate evaluation of the two-pion contribution to the muon anomalous
magnetic moment [3] which is the input for our work. The method requires the Omnès
function for the phase from 4m2

π ≤ t � tin. In the present paper, we find constraints on
the coefficients c and d appearing in the Taylor expansion:

F(t) = 1 + 1

6
〈r2

π 〉t + ct2 + dt3 + · · · , (1)
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using a technique discussed in ref. [2], which makes use of information on both the phase
and modulus and the value of the form factor in the space-like region. We also consider the
problem of the zeros, and obtain regions in the complex t-plane where zeros are excluded.

2. Review of the method

We include information on the modulus via an integral relation

1

π

∫ ∞

tin

dtρ(t)|F(t)|2 ≤ I, (2)

where ρ(t) is a positive definite weight in the region of integration and I is a known
quantity. We make the particular choice for I that corresponds to the two-pion contri-
bution to the (g − 2) of the muon. We transform our problem via a conformal map,
cast the integral equation into a canonical form and derive a determinant (for details, see
ref. [2]) which is central to our investigations for obtaining bounds on the low-energy
Taylor series expansion coefficients of Fπ and for finding regions of excluded zeros in the
complex t-plane.

3. Inputs and results

A detailed description for the phase, modulus and the space-like data used have been
presented in Sec. III and in Tables I and II of ref. [2]. We take

√
tin = 0.917 GeV, which

corresponds to the first important inelastic threshold due to the ωπ pair. A very precise
parametrization of the phase-shift δ1

1 which we have used in our work is given in ref. [4].
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Figure 1. Allowed domain in the c–d plane calculated with tin = (0.917 GeV)2

and 〈r2
π 〉 = 0.43 fm2 for three values of F(t1) (central value in Table VII of ref. [1]

and the extreme values obtained from the error intervals) at the space-like point
t1 = −1.6 GeV2. Also shown is the bigger ellipse with just phase and modulus.
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Figure 2. Domain without zeros obtained with tin = (0.917 GeV)2 and 〈r2
π 〉 =

0.43 fm2, using in addition, the central experimental value F(t1) = 0.243 (the
central experimental value given in Table VII of ref. [1]) at the space-like point
t1 = −1.6 GeV2.

Above tin, we use a smooth phase δ(t), which approaches π asymptotically – in fact, the
results are independent of the phase above tin.

From figure 1, we observe that our best constraints are obtained by including space-like
data in addition to the phase and modulus information. Following this, we obtain:

3.75 GeV−4 � c � 3.98 GeV−4,

9.91 GeV−6 � d � 10.45 GeV−6. (3)

Comparing with previous determinations of c and d, we find that our constraints are in
general agreement with those in the literature (see ref. [2] for details).

With regard to complex zeros, we find that the addition of space-like data enlarges the
domain where zeros are excluded. In figure 2, we show the domain in the complex plane
where zeros are excluded using a space-like datum.

4. Conclusions

In this paper, we have obtained stringent bounds on the Taylor coefficients of the pion
electromagnetic form factor by exploiting analyticity and unitarity techniques and using
various theoretical and experimental inputs. Our results are compared with earlier work
and we find that they are in general agreement with some of them. Using the same tech-
nique, we have also presented a systematic analysis of zeros of the pion electromagnetic
form factor. The knowledge of the zeros is useful for different phenomenological anal-
yses. Our results, which show that zeros are excluded from a rather large region at low
energies give support to certain representations (which assume that zeros are absent) and
also confirm theoretical expectations based on chiral perturbation theory and more general
physical arguments.
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