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Abstract. Random geographical networks are realistic models for wireless sensor networks which
are used in many applications. Achieving average consensus is very important in sensor networks
and the faster the consensus is, the durable the sensors’ life, and thus, the better the performance
of the network. In this paper we compared the performance of a number of linear consensus algo-
rithms with application to distributed averaging in random geographical networks. Interestingly,
the simplest algorithm – where only the degree of receiving nodes is needed for the averaging – had
the best performance in terms of the consensus time. Furthermore, we proved that the network has
guaranteed convergence with this simple algorithm.
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1. Introduction

Wireless sensor networks are increasingly used in many applications ranging from envi-
ronmental to military cases [1–3]. In such networks, the sensors (or nodes) sense,
communicate and make decision on some parameters (e.g. temperature or humidity) in a
distributed manner without traditional infrastructures (e.g. routers). The nodes repeatedly
exchange their information with their neighbouring nodes to come to a conclusion about
the environmental phenomenon, e.g. temperature, in the area covered by the network.
If the network is carefully designed, this way of distributed monitoring is advantageous
over the case where each sensor sends its information to the base station. Especially, the
network will have better energy consumption and robustness properties [1–3].

Often, in a sensor network, the nodes need to reach consensus on the sensing parame-
ters [4,5]. Therefore, a consensus (or synchronization) algorithm, i.e. a communication
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protocol between the nodes, should be used [4–7]. Since the nodes in a sensor net-
work are cheap, unreliable, with limited computational power and limited battery life,
the consensus algorithm should be as simple as possible. Also, the algorithm should be
designed in such a way to force the nodes to reach consensus in a short time, as the
shorter the consensus time is, the less the energy consumption, and thus, the more durable
the network.

Synchronization is the most common form of collective behaviour observed in dynam-
ical networks [8,9], which can be enhanced through structural alteration in the network
[10,11]. The consensus (or synchronization) can be achieved through linear, nonlinear,
adaptive, local, distributed, or time-varying coupling between the nodes [4,12–14]. It is
also possible to consider communication delay in the network and seek for consensus
rules [15]. Performance of a consensus algorithm, i.e. consensus time, can be linked to
the characteristics of the connection graph, e.g., the second smallest eigenvalue of the
Laplacian matrix [16,17]. Ability of the network for providing better consensus can be
improved by changing its topology, e.g., adding new edges to the network [18]. Hav-
ing the global structure of the connection graph, the optimal communication protocol,
i.e. coupling weighting between the nodes, can be designed. However, this needs global
information on the network structure that cannot be attained in many cases. Alternatively,
a number of protocols that only need local information can be used to do the job [17].
In this paper we show that a simple local communication protocol can lead to the
consensus in a reasonably short time.

2. Consensus in discreet-time systems

The consensus can be studied in continuous-time or discrete-time dynamical systems. In
this work, we considered discrete-time systems; however, the results are also valid for
continuous-time systems. Let us suppose that N nodes measure the quantities x1, x2, . . . ,
xN (e.g. temperature, humidity, or time) and the network has to make a decision on the
observed phenomenon by computing a function f (x1, x2, . . . , xN ) of the measurements.
The aim of a consensus algorithm is to make the xi ’s the same through an iterated pro-
cess. We considered a simple linear coupling, i.e., communication protocol, where the
nodes linearly influence each other without any communication delay. More precisely,
the difference equations for the network read as

xi (k + 1) = xi (k) +
N∑

j=1

σi j ai j (x j (k) − xi (k)), i = 1, 2, ..., N , (1)

where xi ∈ R
d are d-dimensional state vectors (measured quantities), σ = σi j > 0 is the

matrix of the step sizes and A = ai j is the binary adjacency matrix. The above equations
can be rewritten as

xi (k + 1) = Pxi (k), i = 1, 2, ..., N , (2)

where P = I −σ × L is called the Perron matrix (× is the array multiplication operator),
L = D − A is the Laplacian matrix (D is a diagonal matrix with degree of the nodes in
the diagonal entries) and I is the identity matrix.
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It can be simply proved that for the values of the uniform step size σ in the range
(0,1/kmax], with kmax being the maximum degree of the graph, the above system is
asymptotically globally convergent to [17]

∀i; lim
k→∞ xi (k) = α = 1

N

N∑

i=1

xi (0), (3)

which is indeed an average of the initial measurements. With this configuration, the
consensus time is at least as fast as 1 − μ2, where μ2 is the second smallest eigenvalue of
σ × L [4]. It is worth mentioning that when the step size is larger the consensus can be
achieved faster (provided that the convergence is guaranteed).

3. Speeding up the average consensus

In order to minimize the consensus time, one can optimize the step size σi j for any link
ei j between the nodes i and j , i.e., optimizing the link weights. To this end, a number
of methods have been proposed such as a convex optimization-based method [19], and
the ones based on the betweenness centrality measures [5,20]. However, these methods
require complete knowledge of the topological properties of the networks, which cannot
be attained for many cases. We consider the following effective algorithms that need only
local information of the networks.

Algo1. Uniform step size as σ = 1/kmax. As we mentioned, with this choice the average
consensus is guaranteed in finite steps. However, since computing kmax needs global
information on the network topology, this might not be applicable in some applications.

Algo2. Uniform step size as σ = 2/(λ2 + λN ). λ2 and λN are the second smallest and
the largest eigenvalues of L , respectively. This choice for the uniform step size has been
shown to be sub-optimal for consensus time [17]; however, it needs computation of the
eigenvalues, which indeed requires global information on the network.

Algo3. Edge-specific step size as σi j = 1/max(ki , k j ). ki is the degree of node i . This
algorithm – known as Metropolis–Hasting algorithm – has been shown to have guaranteed
convergence and have been frequently used in real networks [17]. The advantage of this
algorithm over Algo1 and Algo2 is that it needs local information (degree) of the adjacent
nodes.

Algo4. Edge-specific step size as σi j = 1/ki k j . It has been shown that the link weights
in many real-world networks have high correlation with the product of the degree of its
end nodes [21]. Therefore, this quantity can be an estimate of the load of the links.

Algo5. Edge-specific step size as σi j = 1/ki . This way the weighted connection graph
becomes directed; σ i j is the weight of the communication from the node j to the node
i . This is the simplest one among these five algorithms, since when node i receives a

Pramana – J. Phys., Vol. 79, No. 3, September 2012 495



Mahdi Jalili

signal x j from node j , j does not need to transmit its degree to i in order to let i compute
the update for its quantity xi (eq. (1)). The only parameter required for each node to
update its quantity is its own degree. With this choice for the step size, the convergence
is guaranteed.

Lemma. Considering the system expressed by eq. (1) or (2) and with the choice of the
step sizes as Algo5, the consensus is guaranteed in finite iterations.

Proof. In order to prove the convergence, one has to show that the Perron matrix is
primitive with all eigenvalues inside the unit circle [4]. With this choice of step sizes,
the Perron matrix can be written as P = I − D−1L . Since the connection graph is
connected, P is irreducible. Also, all its raw-sums are equal to zero. Therefore, P is a
primitive matrix. It is easy to show that the eigenvalues of P are 1 − δi , where δi is the
i th eigenvalue of D−1L . The diagonal elements of D−1L are 1. Although D−1L is a
non-symmetric matrix, due to det(D−1L − λI) = det(D−1/2 L D−1/2 − λI) for any λ (‘det’
denotes determinant), the eigenvalues of D−1L are equal to those of D−1/2L D−1/2, i.e.
real and non-negative with smallest eigenvalue as δ1 = 0. For this case, Gerschgorin
circle theorem [22] guarantees that 0 < δ2 ≤ · · · ≤ δN < 2. Thus, all the eigenvalues of
P are inside the unit circle, and the proof is complete.

Considering that x(k) = Pk x(0), an average consensus is obtained if the limit
limk→∞ Pk exists. Due to Perron–Frobenius theorem, if P is a primitive non-negative
matrix with right and left eigenvectors v and w, respectively, satisfying, wTP = wT ,
Pv = v and vT w = 1, then we have, limk→∞ Pk = vwT [23]. Since P is primitive and
non-negative, the limit exists and average consensus is achieved.

4. Simulation results

In this section, we compared the performance of the above algorithms through numerical
simulations on random geographical networks that are realistic models for sensor net-
works. The random geographical networks were constructed as follows [5,24]: A number
of nodes were randomly distributed in a two-dimensional field with normalized length and
width of 1. The coordinates of the nodes were picked up from a uniform distribution in
the range [0,1]. Each sensor can communicate with those in its neighbourhood defined by
a circle with radius R centred at the coordinates of the sensor. Furthermore, even though
two nodes are in the communication range, the communication between them might fail
with probability Pf .

We numerically computed the consensus time T . One can determine T by directly
monitoring the average consensus error and computing the time necessary for making
the error small enough. When consensus is achieved in a network, the error converges
distinctly to zero. Thus, by putting a threshold on the consensus error and some proper
stopping conditions, one can obtain the consensus time. Consider the dynamical network
(1). The average consensus error of the network at step k is defined as

E(k) = 2

N (N − 1)

∑

i< j

‖xi (k) − x j (k)‖2. (4)
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We chose randomly an initial state of the network with unit average error, which can be
done by normalizing the average error to the initial conditions, i.e. dividing the average
error by the error at k = 0. In this case, when E(0) = 1, the error will be insensitive to
the initial conditions. Then, through numerical simulations we determined the time the
network needs until the average error reaches a threshold ε, ε = 10−4 in this work, and
stays below this value thereafter. Indeed, the time T , where E(T ) = ε and E(k) < ε

for k > T , is interpreted as the consensus time T for the dynamical network. If the net-
work includes disconnected components, general consensus (or synchronization) cannot
be attained, regardless of how much strong the coupling is. Therefore, it is not meaningful
to talk about a single consensus time in such networks. In disconnected networks, each
connected component will have a specific consensus time.

We performed numerical simulation on networks with different structural properties.
The sensors were located on a 2D grid with unit dimensions. Figures 1–3 show the con-
sensus time T , i.e. iteration steps, as a function of the network size N , the communication
failure probability Pf and the communication radius R, respectively. Whenever neces-
sary, we fixed the parameters as N = 1600, R = 0.15 and Pf = 0.4. The parameters were
considered in such a way that the networks are connected; otherwise, a general consensus
cannot be obtained regardless of how strong the coupling is.

As can be seen, although Algo5 is the simplest communication protocol among these
five algorithms, it has the best performance in terms of consensus time. For example, in
networks with N = 3600 nodes, the consensus time of Algo5 is half of Algo1 and 30%
less than Algo2 (figure 1). Interestingly, its performance is also better than Algo3, which
gives the optimal uniform step size through computationally expensive spectral analysis.
Note that Algo5 (as well as Algo3 and Algo4) gives non-uniform, i.e. edge-specific, step
sizes.

Figure 1. Consensus time T (i.e. iteration steps) as a function of network size N
(Pf = 0.4 and R = 0.15) for different consensus algorithms (Algo1–Algo5). The
graphs show the mean values with standard errors over 50 realizations.
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Figure 2. T as a function of communication failure probability Pf (N = 1600 and
R = 0.15). The graphs show the mean values with standard errors over 50 realizations.

For fixed communication range and failure probability (R = 0.15 and Pf = 0.4), as the
number of nodes increases, the consensus time exponentially decreases (figure 1). This is
mainly due to the increase of the density of the sensor in the grid. As failure probability
increases, the network become sparser, and thus, it takes longer time for the nodes to
achieve consensus (figure 2). However, Algo5 showed the least increase in the consensus
time. The network become denser as the communication range R increases, and not
surprisingly, the consensus time T decreases (figure 3). T shows an exponential decrease

Figure 3. T as a function of communication radius R (N = 1600 and Pf = 0.4).
The graphs show the mean values with standard errors over 50 realizations.
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by increasing R for all algorithms. However, Algo5 showed the best performance among
them.

5. Conclusions

In this paper, we proposed a simple consensus algorithm with guaranteed convergence for
random geographical networks – realistic models for wireless sensor networks. Through
numerical simulations on random geographical networks, we showed that this algorithm
– which only needs the degree of receiving nodes for implementation and is the simplest
one among a number of linear algorithms – has the best performance, i.e. less consensus
time. This is important since the energy consumption is one of the major challenges in the
design of sensor networks. Faster consensus time can save energy in the network, reduce
the costs and increase the life of the sensors.
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