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Abstract. Travelling and solitary wave solutions of certain coupled nonlinear diffusion-reaction
equations have been constructed using the auxiliary equation method. These equations arise in a
variety of contexts not only in biological, chemical and physical sciences but also in ecological and
social sciences.
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1. Introduction

Lotka-Volterra model and its variants are used to model a large variety of prey–predator
problems [1]. Interestingly, the same set of equations are also used to model the popula-
tion flow between urban and rural areas mainly on the basis of analogy [2]. A fundamental
characteristic of this model is that the two populations interact in a nonlinear fashion
resulting in a pair of coupled partial differential equations. If the analytic solution of
such equations becomes available, then the dependence of the solution on the parameter
involved can be studied in a rather more transparent manner. While such a system has
been of great interest for more than 80 years now, its modified version consisting of dif-
fusion terms has been studied only empirically. In the present work, we shall investigate
certain coupled diffusion-reaction (D-R) equations of very general nature.

In recent years, various direct methods have been proposed to find the exact solu-
tions not only of nonlinear partial differential equations but also of their coupled
versions. These methods include unified ansatz approach [3], extended hyperbolic func-
tion method [4], (G ′/G)-expansion method [5], generalized (G ′/G)-expansion method
[6], generalized hyperbolic function method [7], variational iteration method [8,9], expo-
nential function method [10,11], auxiliary equation method [12–14], generalized auxiliary
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equation method [15,16], and so on. Here, we plan to employ the auxiliary equation
method to obtain an exact solution of the following coupled D-R equations [17]:

ut − c1ux = D1uxx + αu − βu2 − γ uv,

vt − c2vx = D2vxx − μv + χuv (1)

and
ut − c1ux = D1uvxx + l1u2v,

vt − c2vx = l2uv2 − D2vuxx . (2)

These pair of equations describe the cases when both the predator and the prey disperse
by diffusion. In particular, eqs (2) arise when the diffusion coefficient becomes density-
dependent, and the same is indicated by the presence of D1u and D2v coefficients in the
diffusion terms. In the above equations u and v respectively represent the populations of
the prey and the predator; α, β, γ , μ, χ , l1 and l2 are positive constants; D1 and D2 are
diffusion coefficients and c1 and c2 are convective velocities of the prey and the predator.
We first transform the pairs of partial differential equations (1) and (2) into the following
coupled total differential equations by defining a variable ξ = x − wt , viz.,

(c1 + w)u′ − D1u′′ − αu + βu2 + γ uv = 0,

(c2 + w)v′ − D2v
′′ + μv − χuv = 0 (3)

and
(c1 + w)u′ − D1uv′′ − l1u2v = 0,

(c2 + w)v′ + D2vu′′ − l2v
2u = 0, (4)

and then look for solutions of these equations by making the ansatz [12]

u(ξ) =
M∑

i=0

ai z
i ,

v(ξ) =
N∑

i=0

bi z
i , (5)

where ai and bi are real constants to be determined, M and N are positive integers which
can be determined by balancing the highest order derivative term with the highest order
nonlinear term in these equations and z(ξ) satisfies the following auxiliary equation:

(
dz

dξ

)2

= Az4(ξ) + Bz3(ξ) + Cz2(ξ) + D, (6)

where A, B, C and D are real arbitrary constants to be determined later.

2. Exact solution of eqs (1)

Note that for eq. (1), the balancing procedure immediately leads to M = N = 2. This
suggests the choice of u(ξ) and v(ξ) in eq. (5) as

u(ξ) = a0 + a1z(ξ) + a2z2(ξ),

v(ξ) = b0 + b1z(ξ) + b2z2(ξ), (7)
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where the constants a0, a1, a2, b0, b1 and b2 are yet to be determined. Substituting (7)
along with (6) in eq. (3) and then setting the coefficients of z j (ξ) ( j = 0, 1, ..., 4), z′(ξ)

and z(ξ)z′(ξ) to zero in the resultant expression, one obtains a set of algebraic equations
involving a0, a1, a2, b0, b1, b2, w, A, B, C and D as

(w + c1) a1 = 0,

2 (w + c1) a2 = 0,

2DD1a2 + αa0 − βa2
0 − γ a0b0 = 0,

D1a1C + αa1 − 2βa0a1 − γ a0b1 − γ a1b0 = 0,

3

2
B D1a1 + 4C D1a2+αa2−βa2

1 −2βa0a2−γ a0b2−γ a1b1−γ a2b0 = 0,

2AD1a1 + 5B D1a2 − 2βa1a2 − γ a1b2 − γ a2b1 = 0,

6AD1a2 − βa2
2 − γ a2b2 = 0,

and

(w + c2) b1 = 0,

2 (w + c2) b2 = 0,

2Db2 D2 + χa0b0 − μb0 = 0,

D2b1C + χa0b1 + χa1b0 − μb1 = 0,

3

2
B D2b1 + 4C D2b2 + χa0b2 + χa1b1 + χa2b0 − μb2 = 0,

2AD2b1 + 5B D2b2 + χa1b2 + χa2b1 = 0,

6AD2b2 + χa2b2 = 0. (8)

We solve the above set of algebraic equations for B = b2 = 0 and one obtains

a0 = μ

χ
, a1 = ±

√
6aD2

5χβ

(
βμ

χ
+ 4ADD1 D2

μ
− α

)
,

a2 = 6aD1

β
, b0 = 1

γ

(
α − βμ

χ
+ 12ADD2

1χ

βμ

)
, D2β = −3D1χ,

b1 = ∓
√

10β AD2

3γ 2χ

(
βμ

χ
+ 4ADD1 D2

μ
− α

)
,

C = 2μ2 − 4ADD2
2

D2μ
, D = μ

(
α

24AD1 D2
+ 13μ

24AD2
2

)
,

w = −c1 = −c2, (9)
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along with a constraining relation D2α = 29μD1. In view of this constraining relation,
the above values of a0, b0, a1, b1 and C now take the forms

a0 = − 3α

29β
, b0 = 25α

29γ
, a1 = ±

√
90Aα2 D2

841μβ2
,

b1 = ∓
√

250Aα2 D2

841μγ 2
,

C = − 20α

87D1
.

In what follows we discuss some special cases for certain choices of the unknowns A, C
and D in eq. (6).

Case 1a: Let us take A = m2, C = −(1 + m2) and D = 1, where 0 < m2 < 1, in eq. (6).
Then the solution of (6) turns out to be [18] z(ξ) = sn(ξ), which, from (7), leads to the
solution of (3) as

u(ξ) = D1

β

(
−9(1 + m2)

20
±

√
27m2(1 + m2)

2
sn(ξ) + 6m2sn2(ξ)

)
,

v(ξ) = D1

γ

(
75(1 + m2)

20
∓

√
75m2(1 + m2)

2
sn(ξ)

)
, (10)

which is a periodic wave solution of eq. (3). In the limit when m → 1, sn(ξ) → tanh(ξ),
the solitary wave solutions of eq. (3) become

u(ξ) = D1

β

(
− 9

10
± √

27 tanh(ξ) + 6 tanh2(ξ)

)

and

v(ξ) = D1

γ

(
75

10
∓ √

75 tanh(ξ)

)
.

Case 1b: If A = −m2, C = 2m2 − 1 and D = 1 − m2, then the solution of (6) becomes
[18], z(ξ) = cn(ξ). Thus, from (7), we have

u(ξ) = D1

β

(
9(2m2 − 1)

20
±

√
27m2(2m2 − 1)

2
cn(ξ) − 6m2cn2(ξ)

)
,

v(ξ) = D1

γ

(
−75(2m2 − 1)

20
∓

√
75m2(2m2 − 1)

2
cn(ξ)

)
. (11)

When m → 1, leading to cn(ξ) → sech(ξ), the solitary wave solutions of eq. (3)
become

u(ξ) = D1

β

(
9

20
±

√
27

2
sech(ξ) − 6 sech2(ξ)

)
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and

v(ξ) = D1

γ

(
−75

20
∓

√
75

2
sech(ξ)

)
.

Case 1c: If A = −1, C = 2 − m2 and D = m2 − 1, then one finds [18] z(ξ) = dn(ξ),
and, from (7), we have

u(ξ) = D1

β

(
9(2 − m2)

20
±

√
27(2 − m2)

2
dn(ξ) − 6 dn2(ξ)

)
,

v(ξ) = D1

γ

(
−75(2 − m2)

20
∓

√
75(2 − m2)

2
dn(ξ)

)
. (12)

Here, when m → 1, then dn(ξ) → sech(ξ), and the solitary wave solution of eq. (3) is
given by

u(ξ) = D1

β

(
9

20
±

√
27

2
sech(ξ) − 6 sech2(ξ)

)

and

v(ξ) = D1

γ

(
−75

20
∓

√
75

2
sech(ξ)

)
.

Case 1d: If A = 1, C = 2 − m2 and D = 1 − m2, then [18] z(ξ) = cn(ξ)/sn(ξ), and,
from (7), we have

u(ξ) = D1

β

(
9(2 − m2)

20
±

√
27(m2 − 2)

2

cn(ξ)

sn(ξ)
+ 6

(
cn(ξ)

sn(ξ)

)2
)

,

v(ξ) = D1

γ

(
−75(2 − m2)

20
∓

√
75(m2 − 2)

2

cn(ξ)

sn(ξ)

)
. (13)

As before, when m → 1, then (cn(ξ)/sn(ξ)) → cosh(ξ), and the solutions are given by

u(ξ) = D1

β

(
9

20
± ι

√
27

2
cosh(ξ) + 6 cosh2(ξ)

)

and

v(ξ) = D1

γ

(
−75

20
∓ ι

√
75

2
cosh(ξ)

)
.

Note that u(ξ) and v(ξ) become imaginary for this case.
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Case 1e: If A = 1, C = −(1 + m2) and D = m2, then [18] z(ξ) = dn(ξ)/cn(ξ), and
from (7), we have

u(ξ) = D1

β

(
−9(1 + m2)

20
±

√
27(1 + m2)

2

dn(ξ)

cn(ξ)
+ 6

(
dn(ξ)

cn(ξ)

)2
)

,

v(ξ) = D1

γ

(
75(1 + m2)

20
∓

√
75(1 + m2)

2

dn(ξ)

cn(ξ)

)
, (14)

which represents a divergent solution of eq. (3).

Case 1f: If A = 1, C = 2m2 − 1 and D = −m2(1 − m2), then [18] z(ξ) = dn(ξ)/sn(ξ),
and from (7), we have

u(ξ) = D1

β

(
9(2m2 − 1)

20
±

√
27(1 − 2m2)

2

dn(ξ)

sn(ξ)
+ 6

(
dn(ξ)

sn(ξ)

)2
)

,

v(ξ) = D1

γ

(
75(1 − 2m2)

20
∓

√
75(1 − 2m2)

2

dn(ξ)

sn(ξ)

)
, (15)

which again represents a divergent solution of eq. (3).

3. Exact solution of eqs (2)

If one applies the balancing procedure to eq. (4), then one obtains M = N = 2, which in
turn leads to the choices of u(ξ) and v(ξ) as

u(ξ) = a0 + a1z(ξ) + a2z2(ξ),

v(ξ) = b0 + b1z(ξ) + b2z2(ξ). (16)

As before, using (16) and (6) in eq. (4) and then setting the coefficients of z j (ξ) ( j =
0, 1, ..., 6), z′(ξ) and z(ξ)z′(ξ) equal to zero, one obtains the following set of algebraic
equations for the unknowns, namely a0, a1, a2, b0, b1, b2, w, A, B, C and D as

(w + c1) a1 = 0,

2 (w + c1) a2 = 0,

l1a2
0b0 + 2b2 D1 Da0 = 0,

l1a2
0b1 + 2l1a0a1b0 + D1b1Ca0 + 2b2 D1 Da1 = 0,

l1a2
0b2 + l1a2

1b0 + 2l1a0a1b1 + 2l1a0a2b0

+3

2
D1b1 Ba0 + D1b1Ca1 + 4b2 D1Ca0 + 2b2 D1 Da2 = 0,
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l1a2
1b1 + 2l1a0a1b2 + 2l1a0a2b1 + 2l1a1a2b0 + 2Aa0 D1b1

+3

2
Ba1 D1b1 + D1b1Ca2 + 5Ba0b2 D1 + 4Ca1b2 D1 = 0,

l1a2
1b2 + l1a2

2b0 + 2l1a0a2b2 + 2l1a1a2b1 + 2Aa1 D1b1

+3

2
Ba2 D1b1 + 6Aa0b2 D1 + 5Ba1b2 D1 + 4Ca2b2 D1 = 0,

l1a2
2b1 + 2l1a1a2b2 + 2Aa2b1 D1 + 6Aa1b2 D1 + 5Ba2b2 D1 = 0,

l1a2
2b2 + 6b2 D1 Aa2 = 0,

and

(w + c2) b1 = 0,

2 (w + c2) b2 = 0,

l2b2
0a0 − 2D2a2 Db0 = 0,

l2b2
0a1 + 2l2b0b1a0 − a1 D2Cb0 − 2D2a2 Db1 = 0,

l2b2
0a2 + l2b2

1a0 + 2l2b0b1a1 + 2l2b0b2a0

−3

2
Bb0a1 D2 − a1 D2Cb1 − 4Cb0a2 D2 − 2D2a2 Db2 = 0,

l2b2
1a1 + 2l2b0b1a2 + 2l2b0b2a1 + 2l2b1b2a0 − 2Ab0a1 D2

−3

2
Bb1a1 D2 − a1 D2Cb2 − 5Bb0a2 D2 − 4Cb1a2 D2 = 0,

l2b2
1a2 + l2b2

2a0 + 2l2b0b2a2 + 2l2b1b2a1 − 2Ab1a1 D2

−3

2
Bb2a1 D2 − 6Ab0a2 D2 − 5Bb1a2 D2 − 4Cb2a2 D2 = 0,

l2b2
2a1 + 2l2b1b2a2 − 5Bb2a2 D2 − 6Ab1a2 D2 − 2Ab2a1 D2 = 0,

l2b2
2a2 − 6Ab2a2 D2 = 0. (17)

After solving the set of algebraic eqs (17) for B = 0 we get,

a0 = − 6ADD1

l1(C ± √
C2 − 3AD)

, b0 = 2D2(C ± √
C2 − 3AD)

l2
,

a1 = b1 = 0, a2 = −6AD1

l1
, b2 = 6AD2

l2
, w = −c1 = −c2.

As before, now we discuss the special cases for certain choices of A, C and D in eq. (6).

Case 2a: For A = m2, C = −(1 + m2) and D = 1 we get

u(ξ) = 6m2 D1

l1

(
1

(1 + m2) ∓ √
1 + m4 − m2

− sn2(ξ)

)
,

v(ξ) = 2D2

l2
(−(1 + m2) ±

√
1 + m4 − m2 + 3m2 sn2(ξ)). (18)
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Note that for m → 1, sn(ξ) → tanh(ξ), one obtains

u(ξ) = 6D1

l1
(1 − tanh2(ξ)), v(ξ) = 2D2

l2
(−1 + 3 tanh2(ξ)),

corresponding to the upper sign in (17) and

u(ξ) = 2D1

l1
(1 − 3 tanh2(ξ)), v(ξ) = 6D2

l2
(−1 + tanh2(ξ)),

corresponding to the lower sign in (17). Note that eqs (17) while representing periodic
wave solutions, the preceding limiting cases in fact are the solitary wave solutions of
eq. (4).

Case 2b: For A = −m2, C = 2m2 − 1 and D = 1 − m2 we get

u(ξ) = 6m2 D1

l1

(
1 − m2

(
2m2 − 1

) ± √
1 + m4 − m2

+ cn2(ξ)

)
,

v(ξ) = 2D2

l2
((2m2 − 1) ±

√
1 + m4 − m2 − 3m2cn2(ξ)). (19)

In general, these are the periodic wave solutions of eq. (4). When m → 1, cn(ξ) →
sech(ξ), one obtains only single solution for u(ξ), namely

u(ξ) = 6D1

l1
sech2(ξ).

However, corresponding to upper and lower signs in v(ξ) we have

v(ξ) = 2D2

l2
(2 − 3 sech2(ξ)) and v(ξ) = −6D2

l2
sech2(ξ),

respectively. The latter represents a solitary wave solutions of eq. (4).

Case 2c: For A = −1, C = 2 − m2 and D = m2 − 1 we get

u(ξ) = 6D1

l1

(
m2 − 1

(2 − m2) ± √
1 + m4 − m2

+ dn2(ξ)

)
,

v(ξ) = 2D2

l2
((2 − m2) ±

√
1 + m4 − m2 − 3 dn2(ξ)). (20)

Not only the nature of the above solutions in this case is the same as of case (2b) but also
the limiting solutions turn out to be identical.

Case 2d: For A = 1, C = 2 − m2 and D = 1 − m2 we get

u(ξ) = 6D1

l1

(
(m2 − 1)

(2 − m2) ± √
1 + m4 − m2

−
(

cn(ξ)

sn(ξ)

)2
)

,

v(ξ) = 2D2

l2

(
(2 − m2) ±

√
1 + m4 − m2 + 3

(
cn(ξ)

sn(ξ)

)2
)

. (21)
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These are the divergent solutions of eq. (4) for large ξ . For m → 1, (cn(ξ)/sn(ξ)) →
cosh(ξ), one obtains

u(ξ) = −6D1

l1
cosh2(ξ)

and

v(ξ) = 2D2

l2
(2 + 3 cosh2(ξ)) and v(ξ) = 6D2

l2
cosh2(ξ),

corresponding to the upper and lower signs in v(ξ).

Case 2e: For A = 1, C = − (
1 + m2

)
and D = m2 we get

u(ξ) = 6D1

l1

(
m2

(1 + m2) ∓ √
1 + m4 − m2

−
(

dn(ξ)

cn(ξ)

)2
)

,

v(ξ) = −2D2

l2

(
(1 + m2) ∓

√
1 + m4 − m2 − 3

(
dn(ξ)

cn(ξ)

)2
)

, (22)

which in general represent divergent solutions of eq. (4).

Case 2f: For A = 1, C = 2m2 − 1 and D = −m2
(
1 − m2

)
we get

u(ξ) = 6D1

l1

(
m2(1 − m2)

(
2m2 − 1

) ± √
1 + m4 − m2

−
(

dn(ξ)

sn(ξ)

)2
)

,

v(ξ) = 2D2

l2

(
(2m2 − 1) ±

√
1 + m4 − m2 + 3

(
dn(ξ)

sn(ξ)

)2
)

, (23)

which again represent divergent solutions of eq. (4) in general.

4. Concluding remarks

With a view of having a deeper understanding of certain problems of population dynam-
ics, particularly when there exists a coupling in the population densities of different
species, the exact solution of two pairs of coupled partial differential equations (see eqs (1)
and (2)) which frequently occur [17] in the field, is investigated here. Recently, growth of
the cancerous cells have been modelled by nonlinear D-R equation [19,20]. Though all
these depend on the modelling of the underlying phenomena, some of the results obtained
here can be used for studying the growth of cancerous cells [19]. In our case, the two
species in eqs (1) and (2) may represent the concentration of normal and cancerous cells.
For example, u(ξ) may represent the concentration of cancerous cell and v(ξ) may rep-
resent the concentration of normal cell. Then the limiting case of eqs (10), (11), (12)
and (18), (19), (20) represent the growth of normal and cancerous cell where, if the
concentration u(ξ) of cancerous cell increases then concentration v(ξ) of normal cell
decreases [20].
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In particular, a variety of periodic and solitary wave solutions are obtained for different
choices of the unknown parameters appearing through the ansatz made for the solutions.
Periodic solutions obtained in this paper can be used to explain the population dynamics
of certain species in ecology. Periodicity of this kind has been observed in the popula-
tion of hares and lynx [1]. Divergent solutions obtained in this paper are physically not
acceptable.

While the solutions of the pair of eqs (4) involve the diffusion coefficients D1 and D2

and the corresponding couplings l1 and l2 in a symmetrical manner in all the cases, the
same is not the case with the solutions of the pair of eqs (3). Interestingly, the solutions
of eqs (3) do involve only the diffusion coefficient D1 along with the coupling parameters
β and γ in all the cases. It appears that the diffusion coefficient D2 does not play any role
as far as solutions of eqs (3) are concerned. The case when the coefficients in (1) and (2)
become time-dependent could be of much interest. Such studies are in progress.
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