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Abstract. We investigate the role played by the cosmological constant during gravitational col-
lapse of a radiating star with vanishing Weyl stresses in the interior. We highlight the role played
by the cosmological constant during the latter stages of collapse. The evolution of the temperature
of the collapsing body is studied by employing causal heat transport equation. We show that the
inclusion of the cosmological constant enhances the temperature within the stellar core.
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1. Introduction

The end state of a collapsing star remains an important problem in theoretical astro-
physics. The Cosmic Censorship Conjecture due to Penrose held sway until the discovery
of solutions admitting naked singularities. Relativistic stellar models incorporating phys-
ically viable matter distributions such as heat flux, radiation, anisotropic stresses and the
electromagnetic field have made the study of gravitational collapse more tractable. The
simple dust ball collapse first studied by Oppenheimer and Snyder [1] has evolved into
a more general treatment of the collapsing sphere in which gravitational and thermody-
namical effects determine the outcome of collapse. The Vaidya solution [2] has made it
possible to study radiating stars with a nonempty exterior. The junction conditions for a
radiating spherically symmetric star was presented by Santos [3]. These conditions have
led to a rich class of radiating stars which continue to provide insight into the problem
of dissipative collapse. General treatments of the influence of thermodynamical fluxes
during collapse as well as physically motivated stellar models such as Euclidean stars
and expansion-free collapse have been provided by Herrera and co-workers [4,5]. Their
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ground-breaking work has laid the foundations for a more realistic approach to the study
of gravitational collapse of radiating stars.

The cosmological constant problem has presented a strong challenge to both observa-
tional as well as theoretical physics. Present day observations from Type Ia supernovae
data, baryonic acoustic oscillations and high redshift data point to a small, positive cos-
mological constant. Quantum field theory, on the other hand, predicts a large theoretical
value for the cosmological constant. This constant has been associated with dark energy
or gravitational aether. The uncertainty in the equation of state at nuclear densities (which
may be the case at various epochs of a star’s evolution) begs the question as to what
degree would a nonzero cosmological constant affect the evolution of a collapsing stellar
configuration. In this study we investigate the role played by the cosmological constant
in the gravitational collapse of conformally flat, radiating spheres. The influence of the
cosmological constant on bounded matter distributions has been studied in various sce-
narios. Rindler and Ishak [6] showed that a positive cosmological constant diminishes
the classical bending of light by a localized, spherically symmetric mass distribution.
Comprehensive studies of static fluid spheres in the presence of a cosmological constant
have led to a modification of Buchdahl’s compactness ratio M/R ≤ 4/9 (see Andreasson
and Boehmer [7] and references therein). Recently, Chan et al [8] investigated the influ-
ence of the cosmological constant on gravastar formation. Their model consisted of a
de Sitter interior space-time, matched to an infinitely thin fluid shell with a barotropic
equation of state, which was in turn matched to an external de Sitter–Schwarzschild
space-time. They showed that the formation of these particular models is affected by
the relative magnitudes of the interior and exterior cosmological constants. In their study
of the gravitational collapse of null strange quark fluid and its influence on cosmic censor-
ship, Ghosh and Dadhich [9] indicate that the bag constant B appearing in the equation
of state p = 1

n (ρ − 4B) makes a similar contribution as the cosmological constant to
the dynamics of the collapsing fluid. Physically, the inclusion of the strange quark mat-
ter component favours the formation of black holes. Govender and Thirukkanesh [10]
provided a class of radiating stellar models with heat dissipation in the presence of a
cosmological constant. A study of the temperature profiles of these models indicated
that the cosmological constant enhances the temperature at each interior point within the
stellar core.

The general solution for the interior of a spherically symmetric, conformally flat radi-
ating star was first provided by Banerjee et al [11]. A simple radiating model with heat
flux was presented in which the exterior space-time was described by the outgoing Vaidya
solution. In a more recent study by Herrera et al [4], the general conformally flat model
was resurrected in which they were able to solve the boundary condition required for
the smooth matching of the interior and exterior space-times for particular cases. The
physical viability of these models was studied by Maharaj and Govender [12]. Subse-
quently, Herrera et al [5] and Misthry et al [13] obtained further classes of conformally
flat radiating stars. In this paper we generalize the results of Misthry et al to include
the cosmological constant. We further provide an analysis of the physical behaviour of
our model within the framework of extended irreversible thermodynamics. The influence
of the cosmological constant on the temperature profiles is clearly exhibited in both the
causal and noncausal theories. We draw comparisons with the models of Misthry et al
and confirm earlier findings by Govender and Thirukkanesh.
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2. Field equations

We investigate a spherically symmetric radiating star with shear-free matter. The interior
metric for shear-free matter is given by

ds2 = −A2dt2 + B2[dr2 + r2(dθ2 + sin2 θdφ2)], (1)

where A and B are functions of both the temporal coordinate t and the radial coordinate
r . The energy–momentum tensor for the interior matter distribution is described by

Tab = (ρ + p)uaub + pgab + qaub + qbua . (2)

For the line element (1) and matter distribution (2), the coupled Einstein field equations
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where the heat flux qa = (0, q, 0, 0) has only the nonvanishing radial component. The
system of equations (4)–(7) governs the general situation in describing matter distribu-
tions with isotropic pressures in the presence of heat flux and cosmological constant �

for a spherically symmetric relativistic stellar object. From (4)–(7), we observe that if the
gravitational potentials A(t, r) and B(t, r) are known, then the expressions for the matter
variables ρ, p and q follow immediately. The system (4)–(7) contains four equations with
five unknowns A, B, p, q and ρ so that we may specify one of the variables to solve the
system. The components of the Weyl tensor for the line element (1) are

C2323 = −r4

(
B
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)2

sin2 θC0101, (8)

= 2r2
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= −2r2C1313, (12)
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where

C2323 = r4
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In order to ensure the vanishing of the Weyl stresses in the interior space-time we must
have C2323 = 0 which yields

A = (C1(t)r
2 + 1)B. (14)

Equating (5) and (6), and using (14) we obtain the condition of pressure isotropy
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B ′ − 2
B ′

B
− 1

r
= 0. (15)

On integrating (15) we get

B = 1

C2(t)r2 + C3(t)
. (16)

3. Junction conditions

The exterior space-time of our model is described by the Vaidya solution with nonvanish-
ing cosmological constant �

ds2 = −
(
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)
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where m(v) denotes the mass of the fluid as measured by an observer at infinity. To
obtain a complete description of a radiating star, the interior space-time must be smoothly
matched to the exterior space-time. The junction conditions have recently been presented
by Govender and Thirukkanesh [10] and we only present the main results here.
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To fix the temporal behaviour of our model, junction condition (21) needs to be solved.
For our line element (1) and the assumption of vanishing Weyl stresses, eq. (21) reduces
to the nonlinear equation
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where r = b determines the boundary of the star. Following the ansatz adopted by Misthry
et al [13], eq. (22) can be recast into a simpler form by introducing the transformation

U = C1b2 + 1, (23)

where U = U (t). Using this transformation eq. (22) takes the form
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Note that eq. (24) is an Abel’s equation of the first kind in U . This can we written as
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In general, Abel’s equations are difficult to solve. However, we obtain classes of solutions
by imposing restrictions on A ,B,C and D in the following sections. For the case A =
0 we obtain

C2b2 + C3 = α,

where α is an arbitrary constant. Therefore eq. (24) becomes an algebraic equation[
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Note that we obtain this class of solutions in terms of arbitrary function C3 without any
integration. When � = 0 the class of solutions (27)–(29) reduces to the first category of
solutions found by Misthry et al [13]. If we set C = 0 we get
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Ċ3
2
b2 + 4C3(bĊ3 + C3)
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(C2b2+C3)3/2
[
K2+ 1

b2

∫ e4t/b[4C3(2C2b2−C3)−�b2](Ċ2b2+Ċ3)
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Again infinite classes of solutions are possible for suitable choices of C3. When the
cosmological constant � vanishes, the solutions (32)–(34) reduce to the third category of
solutions presented by Misthry et al. We have successfully demonstrated the existence of
an infinite class of solutions describing a radiating, collapsing sphere with vanishing Weyl
stresses within its interior in the presence of cosmological constant. The cases B = 0
and D = 0 follow in a similar manner as worked out by Misthry et al.

4. Possible end-states

We are now in a position to investigate the role played by the cosmological constant in
the final outcome of dissipative collapse in a particular radiating model. To this end we
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will consider the solution given by (27)–(29) for the case U �= 0. The mass function (20)
yields

m =
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where we have taken the boundary to be r = b. It is clear that the time of formation
of the horizon is reduced in the presence of a positive cosmological constant. The total
luminosity of the collapsing star as perceived by an observer at infinity is given by
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evaluated on �. We note that at the time of formation of the black hole, L∞ = 0, i.e., no
radiation from the stellar surface reaches our observer at infinity. This occurs when
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In the case of vanishing cosmological constant, L∞ becomes zero when

Ċ3 = 0, C3 = α

2
, C3 = 0, C3 = 2α

3
. (39)

Note that the case Ċ3 = 0 leads to the vanishing of the heat flux. Since the function
C3 represents the temporal evolution of the model, we note that the case C3 = α/2
corresponds to RSch = 2M� which marks the time when the collapsing sphere crosses its
Schwarzschild radius to form a black hole. The case C3 = 0 corresponds to the initial
epoch, when the system starts to collapse. Since C3(t) is an arbitrary function we can
choose it such that the evolution of the collapsing system starts off in the remote past
at t = −∞ and proceeds towards t = 0. A similar analysis for the case of vanishing
cosmological constant was performed by Sarwe and Tikekar [14] in which the collapse
proceeds from an initial static configuration.
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5. Temperature profiles

To exhibit the relaxational effects on the temperature profile, we shall employ the causal
transport equation for heat flux given by

τha
bq̇b + qa = −κ(DaT + T u̇a), (40)

where τ is the relaxation time for the thermal signals. Setting τ = 0 in eq. (40), we regain
the so-called Eckart transport equations which predict infinite propagation velocities for
the dissipative fluxes. For the line element (1) the causal transport equation (40) reduces
to

τ(q B )̇ + A(q B) = −κ
(AT )′

B
(41)

which governs the behaviour of the temperature. Setting τ = 0 in eq. (41) we obtain the
noncausal Fourier heat transport equation

A(q B) = −κ
(AT )′

B
(42)

which yields reasonable temperature profiles provided the fluid is close to hydrostatic
equilibrium.

Employing the thermodynamic coefficients for radiative transfer as motivated by
Govender et al [15], the thermal conductivity takes the form

κ = γ T 3τc, (43)

where γ (≥ 0) is a constant and τc is the mean collision time between the massless and
massive particles. Following [16] we assume a generalized power-law behaviour for τc.

τc =
(

α

γ

)
T −σ , (44)

where α (≥ 0) and σ (≥ 0) are constants. In our calculations we further assume that the
velocity of thermal dissipative signals is comparable to the adiabatic sound speed which
is ensured if the relaxation time is proportional to the collision time:

τ =
(

βγ

α

)
τc, (45)

where τ (≥ 0) is a constant. The constant β can be thought of as a causality index,
measuring the strength of relaxational effects, with β = 0 giving the noncausal case.
Using the above definitions for τ and κ , eq. (41) takes the form

β(q B )̇T −σ + A(q B) = −α
T 3−σ (AT )′

B
. (46)

The Eckart temperature is readily obtained by setting β = 0 in (46). Exact solutions
to eq. (46) have been presented by Govinder and Govender [17] for constant collision
times as well as variable collision times. For our model we are able to plot the tem-
perature profiles for the special case of constant collision time. This assumption may
hold true for a brief period of the collapse process. We make use of solutions (27)–(29)
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for the case U �= 0 and C3(t) = aet where a is a constant. It is clear from figures
1 and 2 that the temperatures are well behaved in both the causal and noncausal theo-
ries. More importantly, we note that the temperatures in the presence of the cosmological
constant are higher throughout the stellar core compared to the corresponding model of
Misthry et al [13] (� = 0). This result confirms the earlier findings by Govender and
Thirukkanesh [10]. Here our model has nonvanishing acceleration while the model stud-
ied by Govender and Thirukkanesh is acceleration-free. It is clear from figure 2 that
relaxational effects enhance the temperature at each interior point by a factor of ten. The
causal temperature gradient is higher than its noncausal counterpart, confirming the per-
turbative results presented by Govender et al [16]. It would be interesting and relevant
to include the effects of shear in our radiating model. Work in this direction has been
initiated.
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Figure 1. Noncausal temperature profiles.
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Figure 2. Causal temperature profiles.
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6. Conclusion

We have successfully modelled a radiating star undergoing dissipative collapse in the
presence of a positive cosmological constant. The temporal evolution equation arising
from the junction conditions was solved exactly and we have presented various classes of
solutions with nonvanishing cosmological constant. We further studied the end-state of
the collapse of a particular model and showed that the time of formation of the horizon
is independent of the cosmological constant. The evolution of the temperature of the star
was obtained using a causal heat transport equation. We have shown that the presence
of the cosmological constant enhances the core temperature. This confirms the results
obtained earlier by Govender and Thirukannesh [10].
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