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Abstract. A novel hyperchaotic system is proposed. It is particularly interesting that the hyper-
chaotic system has a nonlinear term in the form of an exponential function and has only one
equilibrium. Basic dynamical properties of the hyperchaotic system are investigated. Moreover,
antisynchronization of the new hyperchaotic system with parameter mismatch and external distur-
bances is also studied in this paper by using adaptive control. Numerical simulation results further
demonstrate that the proposed methods are effective and robust.
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1. Introduction

Chaos has attracted wide attention after Lorenz [1] found the first chaotic system dur-
ing his studies of the atmospheric convection in 1963. Many new chaotic attractors,
such as the Rössler system [2], Chen system [3], Lü system [4], Liu system [5], and
the generalized Lorenz system family [6] have been proposed. But, there is a possi-
bility that messages in secure communication masked by these chaotic systems can be
easily extracted when they were intercepted, since they have only a single positive Lya-
punov exponent [7]. As is well known, hyperchaotic systems are characterized by at least
two positive Lyapunov exponents for typical trajectories in the arbitrarily high dimen-
sion phase space [8] and have the characteristics of high capacity, high security and high
efficiency. Many hyperchaotic systems have been presented since the first hyperchaos
was reported by Rössler in 1979 [9]. Wang et al [10] proposed a four-dimensional (4D)
hyperchaotic Lorenz system by adding a nonlinear controller to Lorenz chaotic system.
Pang and Liu [11] presented a 4D hyperchaotic system which was constructed by adding
a linear controller to a 3D Lü system. It can be seen that the most common method to
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construct a new hyperchaotic system is to add an additional nonlinear state feedback con-
troller into these Lorenz-like chaotic systems and the complicated dynamic properties of
all these hyperchaotic systems are obtained by some quadratic cross-product nonlinear
terms. Therefore, it is very interesting to ask whether there exists a hyperchaotic sys-
tem that contains a nonlinear term. This paper gives a positive answer to this question
by showing a new hyperchaotic system equipped with a nonlinear term in the form of
exponential function. This new system is autonomous, and can display complicated and
unusual dynamical behaviours.

Chaos synchronization is one of the main features of chaos applied in practical engi-
neering. Thus, chaos and hyperchaos synchronizations have been active research topics.
Since Pecora and Carroll first introduced the notation of chaos synchronization in 1990
[12], various kinds of synchronization schemes such as sliding mode control [13], adap-
tive control [14], observer-based control [15], hybrid synchronization [16], robust gain
scheduling synchronization [17], H∞ observer-based synchronization [18], backstep-
ping approach [19], active and passive control [20,21] and so on have been successfully
applied to the chaos and hyperchaos synchronizations. Recently, with the development of
nonlinear control theory, adaptive antisynchronization (AS) which belongs to projective
synchronization becomes an effective method to resolve the control and synchronization
of chaotic and hyperchaotic systems [22]. AS phenomenon is a noticeable phenomenon
in periodic oscillators. In fact, the first observation of synchronization of two oscillators
by Huygens in the seven-tenth century was, AS between two pendulum clocks. Kim et
al [23] have found AS phenomenon in mutually coupled identical Lorenz chaotic sys-
tems. AS phenomena have been observed experimentally in salt-water oscillators [24],
semiconductor lasers [25] and so on. Recently, using different adaptive control methods,
the AS for some typical chaotic and hyperchaotic systems has been discussed [22,26,27].
Further analysis found that these synchronization schemes only concern some dynamic
systems that all the complicated dynamic properties are obtained by some quadratic cross-
product nonlinear terms. To the author’s knowledge, AS of a hyperchaotic system with a
nonlinear term in the form of exponential function has never been reported in the litera-
ture. What is more, these proposed techniques assume that the involved systems are free
from external perturbations. In practice, we have to take parameter mismatch and external
disturbances into account. The effect of these uncertainties will destroy synchronization
and even break it. So, it would be very instructive and significant to study AS in systems
both with unknown parameters and external disturbances.

2. A novel hyperchaotic system and its basic properties

Consider a novel hyperchaotic system generated from a modified Lorenz system with a
nonlinear term in the form of exponential function

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = a(y − x) ,

ẏ = bx − xz + cy + u,

ż = exy − dz,
u̇ = −kx,

(1)

where a, b, c, d, k are system parameters and x, y, z, u are state variables. It is easy
to see the invariance of the system under the coordinate transformation (x, y, z, u) →
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(−x,−y, z,−u), i.e., the system has rotation symmetry around the z-axis. Note that
∇V = (∂ ẋ/∂x) + (∂ ẏ/∂y) + (∂ ż/∂z) + (∂ u̇/∂u) = −a + c − d. So the system is
dissipative as long as −a + c − d < 0. That means the volume element V0 is contracted
by the flow into a volume element V0e−a+c−d in time t .

2.1 Phase portraits

Take the parameters a = 10, b = 40, c = 1, d = 3 and k = 8. The phase portraits
are displayed in figures 1a–1d. It appears that the new hyperchaotic attractor exhibits
a very interesting, complex and chaotic dynamical behaviour. The Lyapunov exponents
of system (1) are found to be l1 = 1.6877, l2 = 0.1214, l3 = 0 and l4 = −13.7271.
There are two positive Lyapunov exponents and it is obvious that the system is really a
hyperchaotic system.

2.2 Equilibria

To analyse the system, a good start is to find its equilibria, and the equilibria of system
(1) can be found by solving the following algebraic equations simultaneously:

⎧
⎪⎪⎨

⎪⎪⎩

a(y − x) = 0,

bx − xz + cy + u = 0,

exy − dz = 0,

−kx = 0.

(2)

We operate the above nonlinear algebraic equations and find that the system has only one
equilibrium point, which is described as E(0, 0, 1/d, 0). In this case, system (1) is a

Figure 1. Phase portraits of system (1). (a) x–y–z view, (b) x–y–u view, (c) x–u–z
view, (d) u–y–z view.
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hyperbolic system. Linearizing the system (1) at E(0, 0, 1/d, 0) now yields the Jacobian
matrix

J =

⎛

⎜
⎜
⎝

−a a 0 0
b − 1/d c 0 1

0 0 −d 0
−k 0 0 0

⎞

⎟
⎟
⎠ ,

and its characteristic equation

�(λ) = (λ + d)

[

λ3 + (a − c) λ2 + a

(

b − c − 1

d

)

λ + ak

]

= 0, (3)

which gives λ1 = −d, and

�0 (λ) = λ3 + (a − c) λ2 + a

(

b − c − 1

d

)

λ + ak = 0. (4)

According to the Routh–Hurwitz criterion, the real parts of all the roots λ in �0(λ) = 0
are negative if and only if a −c > 0, ak > 0 and a(a − c) (b − c − 1/d)−ak > 0. From
these inequalities, one obtains a > 0, a > c and (a − c) (b − c − 1/d) > k > 0. Based
on the above discussion, the following property is verified.

Theorem 1. System (1) has a unique equilibrium E(0, 0, 1/d, 0). Furthermore, the nec-
essary and sufficient condition for equilibrium E to be locally stable is a > 0, a > c and
(a − c) (b − c − 1/d) > k > 0.

2.3 Hopf bifurcation

Theorem 2. Suppose that a > 0, k > 0 and a > c holds. Then, as k varies and
passes through the critical value k0 = (a − c) (b − c − 1/d), system (1) undergoes a
Hopf bifurcation at the equilibrium E(0, 0, 1/d, 0).

Proof. Suppose that (3) has a pure imaginary root λ = iω, (ω ∈ R+). Substituting it into
(3) yields

ak − (a − c) ω2 + iω

[

a

(

b − c − 1

d

)

− ω2

]

= 0. (5)

It follows that

ak − (a − c) ω2 = 0, a

(

b − c − 1

d

)

− ω2 = 0.

Solving the above equations gives

ω =
√

ak

a − c
, k = (a − c)

(

b − c − 1

d

)

,
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under the condition a > c. Substituting k = (a − c) (b − c − 1/d) into (3), one obtains

λ1 = iω, λ2 = −iω, λ3 = −d, λ4 = − (a − c) ,

where ω = √
ak/(a − c). Thus, when a > c, k = k0. So the first condition for Hopf

bifurcation [28] is satisfied.
From (3) and a > c, it follows that

λ′ (k0)
∣
∣
λ=iω

= − (a − c)

3λ2 + 2λ(a − c) + a(b − c − 1/d)

∣
∣
∣
∣
λ=iω

= a − c

2

[
a(b − c − 1/d) + i(a − c)

√
a(b − c − 1/d)

a2 (b − c − 1/d)2 + a(a − c)2(b − c − 1/d)

]

, (6)

implying

Re(λ′(k0)|λ=iω) = a(b−c−1/d) (a−c)2

2a2 (b−c−1/d)2+2a(a−c)2 (b−c−1/d)

= 0. (7)

Therefore, the second condition for a Hopf bifurcation [28] is also met. Consequently,
Hopf bifurcation exists.

In order to validate Theorem 2, we take parameters a = 10, b = 36, c = 1 and
d = 3 while k varies on the closed interval [1,323]. According to Theorem 2, system (1)
undergoes a Hopf bifurcation at k = k0 = (a − c) (b − c − 1/d) = 312. Figure 2 shows
the bifurcation diagram vs. increasing k. It is clear that the system is undergoing a Hopf
bifurcation at k = k0 = 312. �

Figure 2. Bifurcation diagram of system (1) vs. parameter k.
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Figure 3. Spectrum map of log |x |.

2.4 Spectrum map, Lyapunov exponent spectrum and time domain waveform

Figure 3 shows the spectrum map of system (1) which exhibits a continuous broadband
feature. To investigate the impact of parameters on the dynamics of the hyperchaotic
system, here we take parameter c as an example and extend the range of c to an interval
[−6, 6]. The variation of two largest Lyapunov exponents for different values of c is given
in figure 4 by Wolf algorithm [29]. It is found that the new hyperchaotic system possesses
two positive Lyapunov exponents within a wide range of parameter c. Figure 5 shows
the time domain waveform, and it can be observed that the time domain waveform has
non-cyclical characteristics.

Figure 4. Lyapunov exponents spectrum of system (1) vs. parameter c.
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Figure 5. Time domain waveform of system (1). (a) t–x wave, (b) t–y wave, (c) t–z
wave, (d) t–u wave.

3. Adaptive AS with external disturbances

3.1 Principle

Consider the drive chaotic system in the form

ẋ = f (x) + F(x)α + d′, (8)

where x = (x1, x2, . . . , xn1)
T ∈ �1 ⊂ Rn is the state vector, α = (α1, α2, . . . , αm)T ∈

Rm is the uncertain parameter vector of the drive system, which is to be asymptotically
estimated finally. f (x) is an n1 × 1 matrix without the uncertain parameter vector α.
F(x) is an n1 × m matrix, and the element Fij(x) in matrix F(x) satisfies Fij(x) ∈ L∞
for x ∈ �1 ⊂ Rn . d′ = (

d ′
1, d ′

2, . . . , d ′
n

)T ⊂ Rn is the exotic disturbance of system (8),
which satisfies the bounded condition ‖d ′

n‖ ≤ σn for all t , where σ n are known positive
constants. On the other hand, the response system is assumed by

ẏ = g(y) + G(y)β + U + d′′, (9)

where y = (y1, y2, . . . , yn2)
T ∈ �2 ⊂ Rn(n2 ≤ n1) is the state vector, β =

(
β1, β2, . . . , βp

)T ∈ Rp is the uncertain parameter vector of the slave system, which
is to be asymptotically estimated finally. g(y) is an n2 × 1 matrix without the uncertain
parameter vector β. G(y) is an n2 × p matrix, and the element Gij(y) in matrix G(y)

satisfies Gij(y) ∈ L∞ for y ∈ �2 ⊂ Rn . d′′ = (
d ′′

1 , d ′′
2 , . . . , d ′′

n

)T ⊂ Rn is the exotic dis-
turbance of system (9), which satisfies the bounded condition ‖d ′′

n ‖ ≤ ρn for all t , where
ρn are known positive constants. The control input vector U = (U1, U2, . . . , Un2)

T ∈ Rp

is an n2 × 1 matrix, which is used to realize synchronization of systems (8) and (9).
Let e = (e1, e2, . . . , en2)

T = x + y is the AS error vector. Our goal is to design an
appropriate controller U such that the trajectory of the response system (9) with initial
conditions y0 can asymptotically approach the drive system (8) with initial conditions x0.

Pramana – J. Phys., Vol. 79, No. 1, July 2012 87



Fei Yu et al

In this sense, we have limt→∞ ‖e‖ = limt→∞ ‖x (t, x0) + y (t, y0)‖ = 0, where ‖·‖ is the
Euclidean norm. At this point, it means the drive system (8) and the response system (9)
are antisynchronized under the controller U as time t tends to infinity.

3.2 Adaptive AS controller design

Theorem 3. If the nonlinear controller U is taken as

U = − f (x) − F(x)α − d′ − g(y) − G(y)β − d′′ − ke, (10)

where the control amplitude k = (k1, k2, . . . , kn)
T is an n × 1 positive constant matrix,

and the adaptive laws of parameters are taken as

˙̂α = [F(x)]Te, ˙̂
β = [G(y)]Te, (11)

where ˙̂α and ˙̂
β are estimations of the unknown parameters α and β, respectively, then

the response system (8) can synchronize the drive system (9) globally and asymptotically.

Proof. From eqs (8)–(11), the error dynamical system is

ė = F(x) (α − α̂) + G (y) (β − β̂) + d′ + d′′ − ke. (12)

Let α̃ = α − α̂, β̃ = β − β̂. The Lyapunov function candidate can be taken as

V(e, α̃, β̃) = 1

2
(e2 + α̃

2 + β̃
2
) = 1

2
(eT e + α̃

T
α̃ + β̃

T
β̃). (13)

The time derivative of V along the trajectory of system (9) is as follows:

V̇(e, α̃, β̃) = ėT e + α̃
T ˙̃α + β̃

T ˙̃
β

= [
F(x)α̃ + G(y)β̃ + d′ + d′′ − ke

]T
e

− α̃
T [

F(x)
]T

e − β̃
T[G (y)]Te

= − (
k − (

d′ + d′′)) eT

≤ −diag{kn − (‖d ′
n‖ + ‖d ′′

n ‖)}eT

= −diag {kn − (σn + ρn)} eT

= −LeT , (14)

where L = diag {k1 − (σ1 + ρ1) , k2 − (σ2 + ρ2) , . . . , kn − (σn + βn)}, from the theo-
rem of Lyapunov on asymptotic stability, as long as e 
= 0 and L is a positive-definite
matrix. Thus, V̇ < 0 for V > 0, and this completes the proof. �

Remark 1. Note that most of the chaotic or hyperchaotic systems, such as the general-
ized Lorenz system family and many hyperchaotic systems including the above proposed
hyperchaotic system, as well as the Duffing oscillator and some variants of Chuas circuits
can be described by (8).
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Remark 2. If the drive system (8) and the response system (9) satisfy f (·) = g (·),
F (·) = G (·), (n1 = n2, m = p), the proposed schemes can be extended to the adaptive
AS of two identical chaotic or hyperchaotic systems with fully uncertain parameters.

4. Adaptive AS between two non-identical hyperchaotic systems

In this section, we study the AS between two non-identical hyperchaotic systems. Our
aim is to design an adaptive controller and force the response system’s trajectory to have
antiamplitude to the drive system’s trajectory and adjust the unknown parameters and
suppress disturbances simultaneously. System (1) is the drive system which is redescribed
by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a(y1 − x1) + d11,

ẏ1 = bx1 − x1z1 + cy1 + f w1 + d12,

ż1 = ex1 y1 − dz1 + d13,

ẇ1 = −kx1 + d14,

(15)

and here, we take the Lü hyperchaotic system [30] as the response system given by
⎧
⎪⎪⎨

⎪⎪⎩

ẋ2 = a2(y2 − x2) + d21 + u1,

ẏ2 = c2 y2 − x2z2 + w2 + d22 + u2,

ż2 = x2 y2 − b2z2 + d23 + u3,

ẇ2 = z2 − w2 + d24 + u4,

(16)

where di j (i = 1, 2, j = 1, 2, 3, 4) are the disturbances of systems (15) and (16), respec-
tively, and ‖d1 j‖ ≤ α1 j , ‖d2 j‖ ≤ β2 j , where α1 j , β2 j are known positive constants.
U = (u1, u2, u3, u4)

T is the controller, which determines the control functions to real-
ize the adaptive AS between systems (15) and (16). We add (15) to (16), and yield the
following error dynamical system:

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = a1(y1 − x1) + a2(y2 − x2) + d21 + d11 + u1,

ė2 = b1x1 − x1z1 − x2z2 + c1 y1 + c2 y2 + e4 + d22 + d12 + u2,

ė3 = ex1 y1 − d1z1 − b2z2 + x2 y2 + d23 + d13 + u3,

ė4 = −k1x1 + z2 − w2 + d24 + d14 + u4,

(17)

where e1 = x1 + x2, e2 = y1 + y2, e3 = z1 + z2, e4 = w1 + w2. Our goal is to find proper
controller U and parameter update rule, such that system (16) globally antisynchronizes
system (15) asymptotically. When controls are applied, the two systems will approach
AS for any initial conditions by an appropriate controller. For this end, we propose the
following adaptive control law for system (15):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1 = −â1(y1 − x1) − â2(y2 − x2) − (d21 + d11) e1 − p1e1,

u2 = −b̂1x1 + x1z1 + x2z2 − ĉ1 y1 − ĉ2 y2 − e4

− (d22 + d12) e2 − p2e2,

u3 = −ex1 y1 + d̂1z1 + b̂2z2 − x2 y2 − (d23 + d13) e3 − p3e3,

u4 = k1x1 − z2 + w2 − (d24 + d14) e4 − p4e4,

(18)
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and the adaptive laws of parameters are described as
{ ˙̂a1 = (y1 − x1) e1,

˙̂b1 = x1e2, ˙̂c1 = y1e2,
˙̂d1 = −z1e3,˙̂k1 = −x1e4, ˙̂a2 = (y2 − x2) e1,

˙̂b2 = −z2e3, ˙̂c2 = y2e2,
(19)

where ˙̂a1,
˙̂b1, ˙̂c1,

˙̂d1,
˙̂k1, ˙̂a2,

˙̂b2, ˙̂c2 are the estimates of a1, b1, c1, d1, k1, a2, b2, c2 respec-
tively. p1, p2, p3 and p4 are four positive control coefficients, with which we can control
the convergence speed of the scheme.

Theorem 4. The two non-identical hyperchaotic systems (15) and (16) are globally
asymptotically antisynchronized by the adaptive control law in system (15) and the
parameter update rule in eq. (19) with any initial conditions.

Proof. Applying control law in system (18) to system (19) yields the resulting error
dynamics as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ė1 = ã1(y1 − x1) + ã2(y2 − x2) + (d21 + d11) e1 − p1e1,

ė2 = b̃1x1 + c̃1 y1 + c̃2 y2 + e4 + (d22 + d12) e2 − p2e2,

ė3 = −d̃1z1 − b̃2z2 + (d23 + d13) e3 − p3e3,

ė4 = −k̃1x1 + z2 − w2 + (d24 + d14) e4 − p4e4,

(20)

where ã1 = a1 − â1, b̃1 = b1 − b̂1, c̃1 = c1 − ĉ1, d̃1 = d1 − d̂1, k̃1 = k1 − k̂1, ã2 =
a2 − â2, b̃2 = b2 − b̂2 and c̃2 = c2 − ĉ2. Consider the following Lyapunov function

V = 1

2
(eT e + ã2

1 + b̃2
1 + c̃2

1 + d̃2
1 + k̃2

1 + ã2
2 + b̃2

2 + c̃2
2). (21)

The time derivative of V along the solution of error dynamical system gives that

V̇ = eT ė + ã1
˙̃a1 + b̃1

˙̃b1 + c̃1
˙̃c1 + d̃1

˙̃d1 + k̃1
˙̃k1 + ã2

˙̃a2 + b̃2
˙̃b2 + c̃2

˙̃c2

= e1
[
ã1 (y1 − x1) + ã2 (y2 − x2) + (d21 + d11) e1 − p1e1

]

+ e2
[
b̃1x1 + c̃1 y1 + c̃2 y2 + e4 + (d22 + d12) e2 − p2e2

]

+ e3
[−d̃1z1 − b̃2z2 + (d23 + d13) e3 − p3e3

]

+ e4
[−k̃1x1 + z2 − w2 + (d24 + d14) e4 − p4e4

]

+ ã1
[− (y1 − x1) e1

] + b̃1 (−x1e2)

+ c̃1 (−y1e2) + d̃1 (z1e3) + k̃1 (x1e4)

+ ã2
[− (y2 − x2) e1

] + b̃2 (z2e3) + c̃2 (−y2e2)

= −p1e2
1 − p2e2

2 − p3e2
3 − p4e2

4 + (d11 + d21) e2
1 + (d12 + d22) e2

2

+ (d13 + d23) e2
3 + (d14 + d24) e2

4

≤ −p1e2
1− p2e2

2− p3e2
3− p4e2

4+(‖d11‖+‖d21‖) e2
1+(‖d12‖+‖d22‖) e2

2

+ (‖d13‖ + ‖d23‖) e2
3 + (‖d14‖ + ‖d24‖) e2

4

≤ − [
p1 − (α11 + β21)

]
e2

1 − [
p2 − (α12 + β22)

]
e2

2

− [
p3 − (α13 + β23)

]
e2

3 − [
p4 − (α14 + β24)

]
e2

4

= −eT Le, (22)
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Figure 6. State trajectories of the drive system (15) and the response system (16).

where L=diag {p1−(α11+β21) , p2 − (α12 + β22) , p3 − (α13 + β23) , p4−(α14 + β24)}.
As long as e 
= 0 and L is a positive-definite matrix, then V̇ < 0, we have

e, ˙̂a1,
˙̂b1, ˙̂c1,

˙̂d1,
˙̂k1, ˙̂a2,

˙̂b2, ˙̂c2 ∈ L∞. From the error dynamical system (13), we also have
ė ∈ L∞. From the fact that

∫ t

0
λmin (L) ‖e‖2 dt ≤

∫ t

0
eT Le dt

=
∫ t

0
−V̇dt = V (0) − V (t) ≤ V (0) , (23)

where λmin(L) is the minimal eigenvalue of the positive-definite matrix L. Therefore, the
response system (16) can globally antisynchronize the drive system (15) asymptotically.

To verify the effectiveness of the proposed method, we discuss the simulation result
for the AS between the proposed hyperchaotic system and the Lü hyperchaotic sys-
tem. In the numerical simulations, the fourth-order Runge–Kutta method is used to solve
the systems with time step size 0.001. For this numerical simulation, we assume that
the initial conditions, x1(0) = 0, y1(0) = 1, z1 (0) = 0.2, w1(0) = 1 and x2(0) = 0.1,

y2(0) = 0.1, z2(0) = 0.1, w2(0) = 0.1 are employed and the disturbances are set as

(d11, d12, d13, d14) = (sin(20t) ,−2 cos(10t) , 0, 3 sin(30t)) ,

(d21, d22, d23, d24) = (2 cos(20t) ,−3 cos(20t) , sin(20t) , sin(10t)) .

To ensure that L is a positive-definite matrix, here we choose the control inputs
(p1, p2, p3, p4) = (20, 20, 20, 20). The unknown parameters chosen are a1 = 10,
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Figure 7. Dynamics of the variables e1, e2, e3 and e4 for error system (17) with time
t . (a) e1, (b) e2, (c) e3, (d) e4.

b1 = 40, c1 = 1, d1 = 3, k1 = 8 and a2 = 15, b2 = 5, c2 = 10 in the simulations such
that both systems exhibit hyperchaotic behaviour. In addition, the initial conditions of the
adaptive update laws of system parameters are â1(0) = b̂1(0) = ĉ1(0) = d̂1(0) = k̂1(0) =
â2(0) = b̂2(0) = ĉ2(0) = 0.1. Figure 6 displays state trajectories of the drive system (15)
and the response system (16). Figure 7 displays the AS errors between systems (15) and
(16). Figure 8 shows that the estimates â1(t), b̂1(t), ĉ1(t), d̂1(t), k̂1(t), â2(t), b̂2(t) and
ĉ2(t) of the unknown parameters converge to a1 = 10, b1 = 40, c1 = 1, d1 = 3, k1 = 8,
a2 = 15, b2 = 5 and c2 = 10 as t → ∞. �

Figure 8. Estimated values of system parameters with parameter updated law.
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5. Conclusions

In this paper, a hyperchaotic system with an exponential nonlinear term is presented.
Some complex dynamical behaviours such as Hopf bifurcation, Lyapunov exponents and
hyperchaotic behaviour of the simple 4D autonomous system are investigated and anal-
ysed. Then we propose a novel approach of adaptive AS between two non-identical hyper-
chaotic systems with parameter mismatch and external disturbances. Finally, numerical
simulations are provided to illustrate the effectiveness of our approaches. Some potential
engineering applications of the hyperchaotic system, such as in secure communication,
will be further investigated in the near future.
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