PRAMANA © Indian Academy of Sciences Vol. 78, No. 6
— journal of June 2012
physics pp. 865-874

On the theory of slowing down gracefully
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“A moving body will come to rest as soon as the force pushing it no longer acts
on it in the manner necessary for its propulsion.”

(Aristotle)

Abstract. We discuss the transport of a tracer particle through the Bose—Einstein condensate of a
Bose gas. The particle interacts with the atoms in the Bose gas through two-body interactions. In
the limiting regime where the particle is very heavy and the Bose gas is very dense, but very weakly
interacting (‘mean-field limit’), the dynamics of this system corresponds to classical Hamiltonian
dynamics. We show that, in this limit, the particle is decelerated by emission of gapless modes into
the condensate (Cerenkov radiation). For an ideal gas, the particle eventually comes to rest. In an
interacting Bose gas, the particle is decelerated until its speed equals the propagation speed of the
Goldstone modes of the condensate. This is a model of ‘Hamiltonian friction’. It is also of interest
in connection with the phenomenon of ‘decoherence’ in quantum mechanics. This note is based on
work we have carried out in collaboration with D Egli, I M Sigal and A Soffer.

Keywords. Bose-Einstein condensate; Cerenkov radiation; Hamiltonian friction; quantum field
theory.

PACS Nos 11.10.-z; 11.10.Cd; 11.10.Ef; 11.10.Gh; 11.10.Hi; 11.15.B¢t; 11.55.Hx; 12.38.Cy

1. Introduction

We review some recent results on the effective dynamics of particles moving through a
dispersive wave medium, such as the Bose—Einstein condensate of a very dense quantum
gas at a very low temperature. The motion of the particles exhibits friction as long as their
speed is more than the propagation speed of waves in the medium. Friction is caused by
the emission of Cerenkov radiation. Our analysis of this phenomenon provides a modest
example of recent mathematical work in transport theory. A key problem in transport the-
ory consists of deriving the effective dynamics of experimentally observable degrees of
freedom interacting with unobserved degrees of freedom of a macroscopically large envi-
ronment from an underlying fundamental (Hamiltonian or unitary quantum) dynamics of
the entire system; as indicated in table 1.
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Table 1. Examples of fundamental and effective dynamics.

Fundamental dynamics Effective dynamics

Hamiltonian dynamics of point Dissipative dynamics of particles
particles and waves — celestial moving through a medium — friction,
mechanics; diffusion, Brownian motion;

Schrodinger equation, mechanics (quantum) Boltzmann equation,
of atom gases;... dynamics of viscous fluids,...

The key problem alluded to, above, concerns the passage from the left to the right
column in this table. Typically, one might study a system consisting of an observable
tracer particle, or a whole tribe of such particles, coupled to unobserved or only crudely
observed degrees of freedom of a medium such as the electromagnetic field in an optically
dense material, sound waves in a crystal or the Goldstone modes of an atom gas exhibiting
Bose-Einstein condensation. At low temperatures, the emission of Cerenkov radiation by
the particle(s) into the medium is the basic mechanism causing friction of the particles’
motion. When the medium is, initially, in thermal equilibrium at some temperature 7 > 0,
it produces thermal noise that causes a diffusive type of motion of the particle(s) around
its (their) mean trajectory [1,2].

The problem of making these remarks precise by identifying the correct effective
dynamics of the particle(s) and analysing its properties leads one to study a variety of
interesting, novel phenomena in the realm of non-linear Hamiltonian evolution equations
and quantum dynamics for systems with infinitely many degrees of freedom.

2. Some simple model systems

2.1 Dynamics of a particle moving through a medium

We consider a classical particle moving in physical space E3. The Hamilton function of
this system is given by
P2
HX,P)=—+V(X), 1
(X, P) T (X) (1

where X € E? is the position of the particle, P € R3 is its momentum, M is its mass, and
V is the potential of an external force. An example of a potential is

V(X)=—-F-X, ()

where F e R3 is a constant external force pushing the particle; e.g., the gravitational
force close to the surface of the Earth.

The particle is assumed to interact with a wave medium. We consider the example
of a Bose gas exhibiting Bose—Einstein condensation. We would like to treat the entire
system within the framework of classical Hamiltonian dynamics. This forces us to pass
to a limiting regime of the system, the so-called mean field limit: The average density of
the Bose gas is given by py := Np, p > 0, the strength of two-body interactions among
the atoms of the Bose gas is Ay := N~'A, A > 0; we consider the limiting regime where
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N — oo, with p and X kept fixed. In this limit, the state of the gas can be described by
a Ginzburg—Landau order parameter, ¥ (x) € C, where N [ (x)]? is the density of the
gas at the point x € E3. In microscopic units, the mass of a quantum mechanical tracer
particle moving through the Bose gas is given by NM (i.e., it becomes very heavy, as
N — o0) and the external potential is given by NV (X), with M and V fixed. The limit
N — oo corresponds to a ‘classical limit’ in which the quantum dynamics of the system
approaches some classical Hamiltonian dynamics.

The Ginzburg-Landau order parameter of the Bose gas, ¥ (x), and its complex conju-
gate, 1 (x), are interpreted as complex coordinates of an infinite-dimensional affine phase
space, 'gg := H /; (R%), (a certain complex Sobolev space). The standard symplectic
structure on I'gg leads to the following Poisson brackets:

W@, vM = {¥x). ¥} =0
W), ¥} = idx = ). 3)

Quantum mechanically, ¥ and ¥ would be interpreted as annihilation and creation
operators, and the Poisson brackets are replaced by commutators, [-, -], with [-,-] ~
—L{h

In the mean-field limit, N — oo, the following Hamilton functional is appropriate to
describe a non-relativistic Bose gas:

_ 1
Hpc (Y, ¥) = / d’x [2—|w(x>|2
m

+ X f Ey (Y@ =)@ — (YO - p)}, 4)

where @ is a two-body potential of short range and, for reasons of thermodynamic sta-
bility, of positive type, A > 0 is a coupling constant and p > 0 is an average (rescaled)
density. We consider a regime where the U (1)-symmetry

Y(x) = ey, Y e Yx), feR )

is spontaneously broken. It is convenient to impose symmetry-breaking boundary
conditions

(=) (=)

Vv (x)=p+ B (6)
with

B(x) — 0, as|x| — oo.

The Poisson brackets between f and B are the same as those in (3). In terms of the
variables 8 and §, the Hamilton functional is given by

~ 1
Hac(p. ) = [ @[5 1VB@P
m
+ 2 f Ey(B@I* +2/p RN P — )
x(BOIE +245 NBO) |- )
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The interaction between the tracer particle and the Bose gas is given by
Hi(X: B, B) = g / &x WX =) (@) = p)

=g / Ex WX —x)(1B(x) 1 +2¢/p RB(x)), (8)

where X is the position of the tracer particle, W is a spherically symmetric two-body
potential of short range, and g > 0 is a coupling constant. The phase space of the coupled
system is given by

Lo i= Rﬁ

particle

X FBG (9)

and its Hamilton functional is given by
H(X, P; B, B) = H(X, P) + Hyc(B. B) + Hi(X; B, B), (10)

where H is as in (1), Hpg as in (7) and H; as in (8).

2.2 A list of models of decreasing difficulty

(1) G-model: This is the model specified by (9) and (10), with p < oo, 1 > 0, g > 0.
(2) E-model: We consider the ‘Bogoliubov limit’,

K
p— o0, A —> 0, Ap = const. := —

(11)
g— 0, g/p=:v, kand v fixed

In this limit,
H(X, P; B, B) = H(X, P) + HS (B, B) + H® (X B, B),

where

_ 1
Hyo (B, B) = / & [%Ivﬂ(x)lz
+ K/ch NB(x)D(x — y)mﬁ(y)]

HE (X B, B) =2v / dEx WX — x) RBX). (12)

It is useful to introduce real coordinates,
1

Bx) = 7

(p(x) +im(x)) (13)

with

{lo, 0} ={m, 7} =0, {px),7w(y)} =38(x—y).
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Then

Mg = f dx [ﬁ((vmzm + (V) (x))

+3 / &y () D (x — y)(p(y)] (14)
and
HE = V2v f Px WX — x)e(x). (15)

The equations of motion for the Bose gas (v = 0) are
. 1
¢=1{H.¢}=-"An
m
1
T={H,7}=——A@+ kD x .
2m

It follows that

1 1 K
b= —Af=——Ap+-—AD) x 16
¢ =5 A% I <p+2m()¢ (16)
which is a wave equation for ¢ with constant coefficients that can be solved by
Fourier transformation.
One concludes that the frequency, €2, of a plane wave with wave vector k € R3
is given by

K\ «kdk
Q(k)=|k|\/<%> +270
)

(0
~ k2O kL ko, (17)
2m
Here, v, = /k®(0) /2m is the minimal propagation speed of a Goldstone mode

(sound wave) in the Bose—FEinstein condensate of the Bose gas.
The equations of motion of the coupled system are given by

MX=P, P=-VV(X)-— v/d3x VW (X — x) RB(x)

. 1
iﬁ(x):—%Aﬁ(x)—i-g(d)*?}i,B) (x) +vW¥(x), (18)

where W¥(x) := W(x — X).

(3) C-model: » =0, p < o0, g > 0 (see [3]).
(4) B-model: . = 0, p — oo, with g,/p = v fixed (see [4,5]). The equations of

motion in the B-model are those given in (18), with x = 0.
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3. Some special solutions of the equations of motion

3.1 Static solutions: X =P = =0

Let X, € E? be a critical point of the external potential (with X, arbitrary if V = 0). Let
B, be a critical point of the energy functional

_ 1
EX.; B B) = f d’x [%IVﬁ(x)I2+gW(X*—x)(lﬂ(x)|2+2«/5 RPB(x))
+ A / @y (B + 240 RB)P(x — ) (1B

+2p ?ﬁﬂ(y))}-

A critical point B, can be constructed with the help of variational calculus. Then

X=X,P=0, 8= 53*) (x)) is a static solution of the equations of motion. If

X, is a non-degenerate local minimum of V one expects that there exist solutions of the

equations of motion close to this static solution and converging to it, as time ¢ tends to oo.
In the E-model, B, is the real solution of the elliptic equation

A
<_ﬁ+g¢*>ﬁ —— (19)

which can be solved by Fourier transformation. If K&)(O) =K f d3x ®(x) > 0 then the
solution exhibits exponential decay in x.

3.2 Travelling waves for V. =0

Ansatz

X, =vt+ Xo, P, =Mv, veR?
. (20)

Bi(x) = yu(x — X))
Let W be smooth, spherically symmetric and of rapid decay at co. We consider the E-

model, with v, = ,/KCiD(O)/2m > 0 (see (17)). Then, for |v| < v, < v, the equations of
motion (18) have a travelling wave solution of the form (20), and y,, decays exponentially
fast at oo, for |v| < v.; y, has power-law decay at co, for |v| = v,.
As |v| — 0, y, converges to B, (see (19)), with X, = Xy. If ®(x) = §(x) then v, = v,.
The proofs of these claims follow from easy calculations, using Fourier transformation.
For |v| > v, & v,, the equation
LT k=0
om TR0 mvok=
has real solutions, k = k, € R?. Then there do not exist any travelling wave solutions for
V = 0. If the ansatz (20) is plugged into the equations of motion one finds that P # 0,
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with P anti-parallel to v; i.e., a non-zero friction force, F), arises. This force is caused by
the emission of Cerenkov radiation by the particle, and its precise form can be inferred
from Fermi’s Golden Rule.

If «k =0 (i.e., v, = 0) the expression for F, is very simple:

1 (2mv)? R
F, = —const. UW/ dp pIW (/PP 2n
v~ Jo
where the constant is proportional to v. The behaviour of |F,| is indicated in figure 1.
Our discussion suggests to proceed to study forced travelling waves, with V(X) =
—F - X, for a non-vanishing external force F' € R3.

3.3 Forced travelling waves

We study the motion of a tracer particle under the influence of a constant external force
F € R3, with V(X) = —F - X. For simplicity, we consider the B- or the E-model.

Theorem 1 [6]. Suppose that W is smooth, spherically symmetric and of rapid decay at
infinity. Then there exists a positive constant Fy.x < 00 such that

(1) if |F| < Fmax the equations of motion (18) of the B- or E-model have two travelling
wave solutions of the form (20) with velocity v || F, [v| > v, & v,;

(2) if |F| = Fmax there exists a unique travelling wave solution with v || F, |v| > v.;

(3) if |F| > Fmax there do not exist any travelling wave solutions of the form (20).

Remarks. To prove this theorem we must look for solutions of the equations of motion
of the form X, = vt + Xy, P, = Mv, B;(x) = y,(x — X,).
The equations of motion (18) then imply that

—VV(X) = F = v/d3x (VW) (x) Ryy(x)
. A K
—iv-Vyy = ——y, + - (P Nyy) (x) +vW(x). (22)
2m 2
|Fy|
Fmax T
O([v]?) ,
O(Jv[7?)
N /

[l

Figure 1. The behaviour of | Fy|.
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If |[v] > v, the Fourier transform, p,, of the second equation in (22) is singular on a
spherical surface in k-space, and it follows that the first equation in (22) does not have
any solutions unless |F| > 0, as discussed in §3.2.

The right-hand side of the first equation in (22) is a function of |v| that vanishes for
|v| < v, tends to 0, as |v] — o0, and has a unique maximum at some value, v*, of |v|. It
is quadratic in W.

From these observations the proof of the theorem stated above can easily be inferred.
For |v| > v, |F| # 0, the solution, y,, of the second equation describes a conical wave
whose tip is near the position, X/, of the particle.

3.4 Significance of special solutions

The construction of special solutions, as outlined in §3.1-3.3 is elementary, and one may
wonder why such solutions are of any interest, at all. The reason is that one expects
that rather general classes of (time-dependent, non-stationary) solutions of the equations
of motion approach the special solutions constructed above, as time ¢ tends to oo (in a
mathematically precise sense). We briefly discuss this expectation in several situations.

(1) Let us suppose that V (X) has a non-degenerate (quadratic) minimum, V(X,) < 0,
at a point X, € E3, with V(X) — 0, as | X| — oo. We consider the G-model and
choose initial conditions, (Xy, Po, Bo), whose total energy, H(Xo, Po; Bo, Eo), is
strictly negative. Then we expect that the solution, (X;, Py, B;), of the Hamiltonian
equations of motion corresponding to the Hamilton functional H (P, X; B, B) in
(10) approaches a static solution, X, — X,, P, — 0, B — B,, ast — oo,
where B, is a minimizer of the energy functional £(X,; S, B) introduced in §3.1,
provided the coupling constant g is sufficiently small. (If the potential V is as
specified above, but V(X) — o0, as |X| — oo, then one expects that the static
solution (X,, P = 0, B,) is asymptotically stable without further assumptions on
initial conditions of finite total energy and on the coupling constant g.)

(2) We consider the B- or E-model, with V(X) = 0. We choose initial conditions,
(Xo. Po. Bo), of energy H(Xo, Po; Bo, Bo) (see (12)) not ‘much larger’ than % v?
(with v, = v, = 0, for the B-model) and g small enough. Then we expect that
the solution, (X, P, B;), of the equations of motion (18), with the given initial
conditions, approaches a travelling wave solution (20), with |v| < v., as t — 00;
(convergence of S, is understood locally, in arbitrary balls of finite radius around
the position, X, of the tracer particle).

(3) We consider the B- or E-model, but with V(X) = —F - X, 0 < |F| < Fpax-
Let v. > 0 and v. > v_ be the two speeds for which the equations in (22) have
solutions, with |[v| = v. or |[v| = v.. We first discuss the stability of solutions
with |v| = v.. We expect that a solution of the equations of motion (18) corre-
sponding to an initial condition (X, Py, By), with X, € [E3 arbitrary, | Py| < Mv_,
H](fG) (Bo, Bo) small enough, converges to a travelling wave solution of the type dis-
cussed in the theorem of §3.3, with |v| = v_, as time t — oo, provided g is small
enough.

In contrast, if | Py| = Mv-, H]g%) (Bo, Eo) small, the solution (X,, P;, B;) of the equations
of motion (18) will in general not approach a travelling wave solution with [v| = v..
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Rather, we expect that |P;| diverges, as t — oo. Similar behaviour is expected if
|F| > Fnax. Most of these expectations remain unproven, except for expectation (2)
in the context of the B-model.

4. A theorem deserving this name

In this section, we consider the B- and C-models, which are the only models for which
non-trivial results have been established, so far (see [3—-6]). We state our main result for
the B-model; but a very similar result has also been proven for the C-model. We propose
to study solutions of the equations of motion (18), for x = 0.

We choose units such that M = m = 1. The two-body potential W is assumed
to be smooth, spherically symmetric and of rapid decay at oo, with W) =
(27)7?| [ d®x W(x)| = 1. The wave field B is normalized appropriately. The exter-
nal potential V is assumed to vanish identically. Then the equations of motion (18) take
the form

X —p. B v/d3x (V) () R, (),

. 1
ifi(x) = =5 (Ap)(x) + WX (x), (23)

where WX1(x) := W(x — X;) and v = O(1) is a constant. Note that eqs (23) have static
solutions

X, =X,, P=0, Bx)=px)=2(0"W")(x)

indexed by X, and we propose to analyse their asymptotic stability. Our main result is
the following theorem.

Theorem 2 [4]. Under the assumptions described above, there exists an interval I 2O
[0, 0.66) D [O, %] such that, for any § € I, there is some €y = €¢(8) > 0 with the property
that if

[Pol, 14x)*Boll2, 1V Boll2 < €,

where {(x) := /1 + |x|?, then
|P] < c(t)y™ P70 ast — oo (24)

for some finite constant ¢, and

lim |18, — AW = 0.
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Remarks.

(1) If 6 is chosen to be larger than % (note that / contains such values of §) then

t
X,:Xo—i—/ P, ds — X,, ast— o0
0

with | X,| < oo.

(2) We suspect that | P,| ~ t~(1/27% ‘as t — o0, for an exponent § > 1 independent
of initial conditions, as long as | Pol, ||(x)?Boll2, ||V Boll2. are finite. However, this
has not been proven, so far. (If the condition that || (x)?Bo|l» < oo is dropped then
8 may depend on initial conditions. For, consider the equation

b= F, (25)
with F), as in (21). This corresponds to B;(x) = y,, (x — X;). The solution of (25)
behaves like |v,| ~ (£)~', i.e., § = % However, ||V ]|, is divergent!)

(3) The theorem stated above has interesting applications in the analysis of deco-
herence in systems of a heavy quantum mechanical particle moving through a
Bose-Einstein condensate.

Although the initial moves in the proof of the theorem described above are quite natural
and fairly standard, the technical details are suprisingly tedious and involve exhibiting
very subtle cancellations among terms that do not, a priori, exhibit adequate decay, as
time t — 00, in order to ‘close the estimates’.

It would be of considerable interest to study systems of finitely many tracer particles
moving through a Bose—Einstein condensate, or a gas of such particles. It is not very hard
to come up with plenty of interesting and plausible looking conjectures concerning the
behaviour of such systems. But it appears to be very difficult to rigorously prove these
conjectures.

Note: For further results on friction, see also [7-9].
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