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Abstract. Prehistory — Starting from ’t Hooft’s (1971) we have a short look at Taylor’s and
Slavnov’s works (1971-72) and at the lectures given by Rouet and Stora in Lausanne (1973) which
determine the transition from pre-history to history.

History — We give a brief account of the main analyses and results of the BRS collaboration con-
cerning the renormalized gauge theories, in particular the method of the regularization-independent,
algebraic renormalization, the algebraic proof of S-matrix unitarity and that of gauge choice inde-
pendence of the renormalized physics. We conclude this report with a suggestion to the crucial
question: what could remain of BRS invariance beyond perturbation theory.

Keywords. Quantum field theory; gauge field theories; renormalization; BRST symmetry.

PACS Nos 11.10.-z; 11.10.Cd; 11.10.Ef; 11.10.Gh; 11.10.Hi; 11.15.Bt; 11.55.Hx; 12.38.Cy

1. Introduction

On the occasion of Raymond Stora’s 80th birthday, a short look at the history of the
discovery of BRS ‘Symmetry’ is certainly in order. In particular, this historical analysis
is crucial in order to single out Raymond’s role in the discovery.

It is fair to say that the so-called ‘symmetry’ revealed by the BRS work is nowadays a
well-established tool. One should always remember that BRS’s is by no means a symme-
try stating a correspondence among physical configurations satisfying the same evolution
laws. One should rather speak of equivalence among non-physical configurations associ-
ated with the same set of physical states and observables. It turns out that this equivalence
is described in terms of ‘BRS cohomology’. BRS invariance defines the equivalence cri-
terion among the elements of the mentioned classes and the laws of physics appear as the
evolution laws among equivalence classes.

The discovery of BRS invariance marks, in particular, the transition between BRS pre-
history and history. Indeed, as in many cases in physics, the discovery is the consequence
of a long sequence of steps, that we arbitrarily begin with 't Hooft’s 1971 paper [1].
Therefore we give for achieved former crucial results such as Faddeev—Popov’s functional
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measure [2]. After Faddeev—Popov’s work, a general agreement was reached about the
form of the Lagrangian and hence of Feynman rules, the remaining items to be discussed
being essentially renormalizability, gauge choice independence, locality and unitarity,
together with possible generalizations to e.g. gravity. For this reason, the first analy-
ses were devoted to the extension to the Yang—Mills theory of the Ward identity of QED
which expresses at the level of Green functions the freedom of the scalar component
0, A" = 0A of the gauge field. This is the remnant of gauge invariance after gauge
fixing.

To avoid confusions we call Ward identities as the relations among Green func-
tions involving the scalar components of gauge vector fields, while we call ‘symmetry
identities’ as those stating the invariance of Green functions under certain class of
transformations of physical fields and operators and ‘equivalence identities’, as those
which refer to non-physical field and operator transformations. In this sense, the above-
mentioned papers by 't Hooft, Taylor [3] and Slavnov [4] dealt with Ward identities. In
particular, "t Hooft’s identity states that d A has vanishing connected Green functions with
physical operators (mass-shell transverse gluon fields) while Slavnov—Taylor identities
describe more general Green functions of A and gluon fields.

These achievements were followed by the discovery of the variant Slavnov(-Taylor)
identity presented by Rouet and Stora (RS) in the lecture notes of the Enseignement du
troisieme cycle de la Physique en Suisse Romande in 1973 [5], that we call the RS iden-
tity. RS’s is in fact not a Ward identity, indeed its interpretation is the equivalence of the
Green functions related by a transformation of the unphysical field variables. RS identity
was and still is mistaken as an equivalent version of the Slavnov—Taylor identity. It took
a while before the real content appeared clearly marking the transition between prehis-
tory and history of BRS construction. In the next section we shall discuss the physical
motivations for the introduction of new identity.

We shall further discuss the consequences of the new identity in the light of its new
interpretation. One should mention that this led, first of all, to a drastic simplification of
the already presented arguments for unitarity, renormalizabilty and gauge fixing indepen-
dence of gauge theories. A clear evidence of this simplification was given by Zinn-Justin
in his lectures given at Bonn in 1974 [6]. At the same time, BRS invariance allowed a
rigorous and very general definition of the physical content of the theory.

After a short discussion of 't Hooft’s and Slavnov—Taylor Ward identities we discuss
the origin of the RS identity. Considering this identity from the point of view of BRS
invariance, we shortly recall its role in the construction of a renormalized theory without
insisting on the brute force algebraic method. We just consider the general lines of the
renormalization procedure. Then we review the proof of S-matrix unitarity using the
formulation due to Kugo and Ojima which greatly clarifies the relation between unitarity
and BRS invariance via the existence of a conserved charge Q in the asymptotic state
space. The third main point we are going to discuss is gauge fixing independence that we
analyse in the tree approximation leaving the technicalities of the extension to the fully
renormalized theory in the original papers.

We conclude this report trying to give an answer to the crucial question: what remains
of BRS invariance beyond perturbation theory?

838 Pramana - J. Phys., Vol. 78, No. 6, June 2012



BRS ‘Symmetry’, prehistory and history
2. The new Ward identities

As mentioned already, 't Hooft’s derivation of the Ward identity for Yang—Mills theory
proceeds through the invariance condition of the connected Green functional generator
under a particular class of field-dependent gauge transformations whose infinitesimal
parameter w(x) is constrained by the equation

9, D'w(x) = J(x) =0, (1)

where D is the covariant derivative and J (x) is an arbitrary infinitesimal classical source.
Whenever possible, we hide colour indices. In ’t Hooft’s diagrammatic analysis, the
connected Green functional generator appears as a circle in the graphic representation of
the formulae. The particular choice of the gauge parameter, which is natural in the light
of the construction of a Ward identity, is analogous to that made by Fradkin and Tyutin
[7] with the aim of proving directly the gauge fixing independence of Yang—Mills theory.
For this reason Fradkin and Tyutin identified J with 0 A.

Furthermore, "t Hooft limited his analysis to Green functions involving only physical
fields ¢1i)h’ particularly transverse gluons on the mass-shell, and dA. The reason for this
choice is the simplicity of the resulting Ward identity (this identity gives a prescription
for finite counter-terms if a ‘consistent’ regularization exists, that is, in the absence of
anomalous breaking terms. This is in fact the case since dimensional regularization is
consistent. The same comment applies to the Taylor—Slavnov identity) that can be written
for the connected Green functions in the form

k n
<OT [ToAH ¢k 0> =0. )
j=1 i=1

C

The validity of eq. (2) is proved by diagrammatic techniques. However, these are easily
translated into the functional language and the strong form of the quantum action princi-
ple (this is the principle of stationary action in the presence of field sources and taking into
account Jacobian corrections, which holds true in the case of a consistent regularization)
noticing that the source terms associated with the physical fields do not contribute since
they are gauge invariant. Instead, there are contributions from the Faddeev—Popov deter-
minant, which is not gauge invariant, and from the functional measure since the gauge
parameter is field-dependent, and hence the gauge transformation produces a non-trivial
variation of the Jacobian. However, the sum of these contributions vanishes [7]. In other
words, the Faddeev—Popov determinant is not invariant under the gauge transformations
constrained by eq. (1) but the Faddeev—Popov functional measure is.

The restriction to physical fields, however particularly convenient for the proof of the
Ward identity and without consequences on the renormalization analysis (modulo mass
singularities), has the drawback of hiding locality since physical charged fields are non-
local operators. This induced Taylor and Slavnov to extend 't Hooft’s Ward identity by
relaxing the restriction to physical fields and considering generic vector field Green func-
tions. It is clear that new terms appear in the identity which depend on the vector field
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source and, in particular vanish for physical values of the sources. Considering the quan-
tum action principle it is also clear that the new terms correspond to the variation of the
action source term f dx j,(x)A*(x) under the infinitesimal gauge transformation whose
parameter satisfies eq. (1). In order to fix our formulae we consider, without introduc-
ing any further label, the invariantly (dimensionally) regularized bare Yang—Mills theory.
Therefore, we write the (bare) action in the general Feynman gauge with parameter o« in

the form
n,v 2
A f [ ,“G _04) —auapﬂc}, 3)

2a

where the ghost field ¢ is assumed Hermitian while ¢ is anti-Hermitian [8] (notice that
this choice is not uniformly done, see in particular [9]). The corresponding renormalized
theory and the extension to theories without invariant regularizations will be considered
in the light of the BRS algebraic method. Considering the Green functional generator

<0 ‘T (exp <l~ / dxj,Ax)A"(x))) ‘ 0> _ 1)1 @)

and the infinitesimal gauge transformation with parameter w satisfying eq. (1), one finds

/dx <0 ‘T ([W - jM(X)DMU)(x)j| exp <i / dyju(y)A“(y))) ‘ 0>

=0. ®)

Now, going just a little farther than Taylor [3] and Slavnov [4] and introducing the
Faddeev—Popov fields ¢ and ¢ explicitly, we have the identity:

<O’T <a)(x)exp (i/dsz(Z)A“(Z)>> 0>
—i/dy <0‘T <c(x)5(y)J(y) exp (ideju(Z)AM(Z)>>‘O>
= /dy <0‘T (Ml(x,y)J(y)exp (i/dzju(z)A“(z)>>’0>- (6)

As a matter of fact, the non-local operator M~! was introduced by Slavnov who noticed
the relation between this operator and the ‘Green function of the c-particle’.
Combining eqs (5) and (6) and selecting the coefficient of the linear term in J(x), one

has
0A
<0 ‘T( a(x) exp (i / dyju(y)A“(y>))‘0>
—i / dy <0 T (E(x)jﬂ(yw“c(y) exp (i / dzju(z)A“<z>))‘0>. )

This equation, although not appearing in refs [3] and [4], is an obvious explicit form of
the Slavnov-Taylor identity (see [9]). The apparent non-locality of its right-hand side
induced Raymond’s group to search for a further development. They were convinced that
the non-local form of eq. (7) is the direct consequence of not considering the Faddeev—
Popov fields as full right, however non-physical, fields. Indeed there is no source for
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them in Slavnov’s and Taylor’s Green functional generator. Therefore, Raymond and
Rouet introduced the complete ‘local’ Green functional generator

(O1(T exp (i A))]0)

= <0 T (CXP (i / dx [ju(x)A“(x) + é(x)c(x) + EOC)E(X)])) ‘ 0>
= Z,1j1, ®)

and considered the quantum action principle identity corresponding to an infinitesimal
gauge transformation with parameter c¢. Here and in the following we adopt the standard
notation for the ghost fields, ¢ is the geometrical ghost and ¢ is the multiplier (this notation
was used by Slavnov in eq. (15) of his paper [4]. However, there was an exchange of
notation in eqs (38) and (39) which was followed by RS and then BRS).

The Rouet and Stora (RS) point of view is essentially different from that of ’t Hooft,
Slavnov and Taylor, as now the field transformation is local (we shall see in a moment that
this allows a regularization-independent renormalizability proof). However, the compen-
sation between the variation of the Faddeev—Popov determinant and that of the Jacobian
of the vector field measure is now absent since, ¢ being an independent field, the contri-
bution from the Jacobian of the functional measure vanishes while the Faddeev—Popov
determinant varies. As a matter of fact, the crucial point of the new analysis is the evalu-
ation of the infinitesimal variation of the Faddeev—Popov determinant, and this was done
with the acknowledged help of C Itzykson.

To discuss this point we have to use a more explicit notation for the gauge indices
which is easily done since here all the fields and sources correspond to elements of the
Lie algebra of the rigid gauge group. We denote the ghost field components by ¢*(x)
and we introduce the functional operator 7, (x) generating an infinitesimal local gauge
transformation whose sole non-trivial action is given by

(AT)A%(x) = / dy AP ()T (1) A% (x) = DA% (x), )
and which satisfies the Lie algebra relation:
[T (x), Ts(D] = 8(x — ) fy 5T (x). (10)

From eq. (10) one finds the identity (here we use the convention that the generators 7' are
anti-Hermitian and the structure constants are real and antisymmetric and scale with the
coupling constant):

(cT)? = %fdxc“(x)cﬂ(x)fayﬂy(x) = (C 2 CT) . (11)

Now it is easy to compute the result of applying the (cT") operator on the Faddeev—Popov
term in the action which is given by Aen = — f dxo*c(cT)A, (x). Indeed, acting on
Aon by (¢T), after integration by parts, one gets

(€T)Aen = / dx 3"2(x)(cT)* Ay (x) = / dx aﬂa(xwfgc(x)
_ CNC _ cCAC
- —fdx D, e() 5~ (x) = —/dxg(x) S,

where the last identity follows from the ¢ field equation.

Pramana - J. Phys., Vol. 78, No. 6, June 2012 841



Carlo M Becchi

The bare form of the quantum action identity is found noticing that, with the chosen
gauge fixing, Agr = —1/(2c) [ dx(dA)? one has, using the c field equation

(cT)Agr = —é/dx 0A(x)0Dc(x) = —é / dx £(x)0A(x). (13)
One also has for the source terms:

(cT)/dx JHx)AL(x) = /dx JH(x)Dye(x). (14)
Combining all these results together one finds, in the tree approximation:

/dx <o 'T ([j“(x)Ducoc) - sm% - ém%m}

0.
5)

X exp (i / AL MA* () +EWey) + E(y)E(y)])) ' 0>

This is the general Feynman gauge version of the RS identity which appears in Lausanne
Lectures 1973 [5]. It is a tree approximation identity and contains two non-trivial com-
posite operators for which suitable renormalization prescriptions are, in principle, needed.
The renormalization of the theory together with that of the mentioned composite operators
and the general consequences of the RS identity has been the subject of BRS analysis.

3. The BRS approach

The first important point made by BRS has already been mentioned in the introduction
to the present note. RS identity, however inspired by a Ward identity, is an equivalence
relation corresponding to the invariance of the quantum action under local field transfor-
mations with Grassmannian parameter €. In the tree approximation, these transformations
are given by

cAC oA
A" — A" 4+ jeD"c, c—>c+ie 7 c— Cc+ie a

(16)

These relations are trivially extended to theories with matter fields and to general linear
gauge fixings, i.e. when 0A is replaced by a linear combination of (scalar) fields. The
above transformations are known as BRST transformations, and it is commonly agreed
that T stays for Tyutin whose contribution to the research in this field is certainly relevant.

A wide variety of further extensions of the transformation rules is discussed in the
literature. Writing eq. (16) in the form

D —> P +iesd, (17)

where @ is any quantum field, it appears almost immediately from eq. (16) that the s
operator is mass-shell nilpotent, i.e. its square vanishes modulo field equations. Indeed
this fact is easily verified since the action of s2 is null on all the fields with the exception
of ¢ and s°¢ = dDc which vanishes on the ghost mass-shell. Nilpotency of s turns out
to be crucial for a regularization-independent algebraic renormalization, in the proof of
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perturbative S-matrix unitarity and of its independence of the gauge fixing procedure. As
a matter of fact the mass-shell nilpotency can be transformed into strict nilpotency intro-
ducing the Lautrup—Nakanishi multiplier field b [10]. This, although introducing a new
unphysical field, greatly simplifies the analysis. We shall briefly discuss this extension at
the end of the present section.

The major part of BRS analysis [8,11,12] is limited to Higgs models in order to avoid
infrared problems. We are not presenting a complete study of gauge theories but we limit
ourselves to sketch the main ideas and results, we concentrate on Yang—Mills theories
forgetting infrared problems and discussing e.g. unitarity as if the theory were massive.
We present our apologies for this choice.

Technically, in order to profit of BRS invariance in the renormalized theory, one has
to deal with the composite operators Dc and ¢ A ¢, which, of course, are non-trivially
renormalized. In our framework the definition of the suitable renormalization prescrip-
tions requires the introduction of an external non-dynamical field (a source) for every
composite operator. Hence in the Yang—Mills case we introduce the sources ¢ (x) for the
composite operator (¢ A ¢)/2 and y,,(x) for D*c, adding to the source term of the action,
defined in eq. (8), the further term:

o PO@
= [ dx Ca(X)f,s,yT + v, ) (D" c)o(x) |- (18)
The new Green functional generator Z = (0|(T exp(i (As + A%)))|0) satisfies, in the tree
approximation, the functional differential equation:

/d 2 E ) é (x)Z=SZ=0 (19)
X — xX)Z = =0.
-]l"' SJ/M N 8]M

Beyond the normalization conditions of the physical fields and coupling and once the
Feynman gauge parameter « is fixed, a further renormalization constraint is needed to
fix the ghost renormalization constant and (in the Higgs model case) to constrain further
gauge fixing parameters. This constraint is given by the ghost field equation which in the
present case can be written in the form

()2 = — (20)

8
% 8y (x) T
/L
This second identity is easily translated in terms of the ‘effective action’ of the theory
which is identified with the functional generator of the 1-particle irreducible Green func-
tions and hence, in the tree approximation, with the classical action. It implies that the
effective action depends on the ghost field ¢ and on the external field y through the linear
combination y,, — d,.cC.

Identities (19) and (20) allow extending 't Hooft’s analysis to a rigorous proof of the
regularization-independent renormalizability of gauge models. The starting point of the
proof is a general theorem that we call ‘perturbative renormalized quantum action prin-
ciple’ [13]. It asserts that if any identity, corresponding in the tree approximation to the
invariance of the action under local field transformations, is broken at a certain loop order
by radiative corrections renormalized consistently with power counting, it is due to the
appearance of breaking terms corresponding to local operators of bounded dimension
depending on fields and sources (This is the weak form of the quantum action principle.
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Let us stress once more that a local identity corresponds to a local field transformation,
therefore this theorem does not apply to the above discussed Ward identities).

The local identity breaking operators are further constrained by a system of consistency
conditions, analogous to the Wess—Zumino [14] condition for the axial anomaly. Renor-
malizability is proved by finding general solution to the consistency conditions and hence
the general form of the breaking and showing that breaking terms of this form can be
recursively reabsorbed introducing suitable finite Lagrangian counter-terms.

The consistency conditions are obtained by translating eqs (19) and (20) into a
functional differential equation for the effective action:

- - _ (3A)?
F[A,Qy_ac, K]EF[A’ C,V_aCZ g]_ dx 2 9 (21)
o
getting
/d 8T 6T +5f3f ) 2
x| — _—— X) = U.
8A, Sy* 8¢ bc

A recursive analysis shows that the possible local breaking terms belong to the kernel of
a linear nilpotent functional differential operator which is mass-shell equivalent to

_ ) cAC b
s = dx D/LCE—F ) g (.X), (23)

and that they are harmless whenever they belong to the image of the same operator. If
there were breaking terms not belonging to the image, in mathematical terms they would
belong to the cohomology of the same differential operator, and in physical terms they
would be ‘anomalies’. This cohomology is usually called BRS cohomology.

In this way identities (19) and (20) are extended from the tree approximation to the
renormalized level. The analysis can be extended to the construction of renormalized
local physical operators (the first explicit example of application of the BRS method to
a composite physical operator, the gluonic density in QCD, has been given by Kluberg-
Stern and Zuber [15]) which in the tree approximation are inserted into the theory coupled
to further external fields (sources) leaving eqs (19) and (20) invariant. The introduction of
the new sources might, in principle, generate new breaking terms whose power counting
dimension is strictly related to that of the physical operators. However, one can still use
the consistency conditions to verify the renormalizability of the theory in the presence of
the new operators.

Once the BRS invariant theory is perturbatively renormalized, one can discuss its S-
matrix unitarity [11] starting from the coherent state formula [16] (we adopt the symmet-
ric definition of four-dimensional Fourier transform: (27)> f (p) = f dx exp(—ipx) f(x))

- )
S =X Z[j]lj=0 =: exp <— / dp &7, (p)Tap(p)— ) 2Zj]lj=0. (24)
3jv(p)

where @7 denotes the asymptotic fields and I',;, denotes the corresponding Fourier
transformed wave operator.
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The wave operator of the fully interacting theory can be identified with a matrix whose
elements are given by the two-point 1-particle irreducible Green functions. Introducing
the effective action I'[®], one has

2

Lap(p) = 21) —————T[®llo=o
3,(p)d®,(0)
= —|\Qr) ———ZIJjll ‘=o> ; (25)
i (p)8jp©) T
where we have also introduced the connected Green functional Z.[j] = —ilog(Z[j])

and, for simplicity, we exclude fields with non-trivial vacuum expectation value. The
wave operator is constrained, together with the asymptotic fields, by the condition:
Fas (P){OIT (D, (p) @5, (0))[0) = i85/ (27)2.

The unitarity proof is certainly not the most readable part of BRS production [11,12]. Tt
has been highly simplified by Kugo and Ojima [17] who studied the Abelian Higgs model
quantized with the Nakanishi—Lautrup multiplier. Once again we sketch the method using
the Yang—Mills formulae.

The idea is to single out a suitable operator Q on the asymptotic scattering state space.
This operator must be Hermitian, nilpotent and its kernel must contain only states with
non-negative norm. Furthermore, Q must satisfy the identity

i[Q, 2] =18, X1, (26)

where S is defined in eq. (19). Then one has two main results:

e The states belonging to the image of Q in the asymptotic scattering state space have
zero norm since Q is Hermitian and nilpotent.

e  The S-matrix transforms the kernel of Q in the asymptotic scattering state space into
itself.

Indeed from eqs (24), (26) and (19) one has

[Q.8] =10, Z1Z[jllj=0 = —ilS, Z1Z[j]|j=0 = 0. 27
One can conclude that, the S-matrix being pseudo-unitary (S'S = I) in the indefinite
norm asymptotic scattering state space, it is unitary in the kernel of Q.

The technical work consists of the identification of the operator Q. First of all, starting
from the asymptotic wave operators one analyses the asymptotic scattering state space.
This is an indefinite metric Fock space generated by the action of the negative frequency
Fourier components of the quantized fields on the vacuum state |0) which is annihilated
by Q. In the Yang—Mills case one gets informations on the wave operators from eqs (19)
and (20). Indeed, setting

Fos(p) = QP r) = @
P =T A sy T T SE (pse(0)
8r
_ 2
Fuclp) = Q) e (28)
one gets
Lo ()T e(p) = i%rmp) (29)
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from eq. (19) and

ipurv,c(p) = FE,c(p) (30)
from eq. (20).
Furthermore, selecting in (8/87,(p))Z the term singular at p> = 0 one finds

8 8
——Z=-T,.(p)=——Z+R(p), 31
572 (p) we(p) ) (») 31

where R has no pole on the ghost mass-shell.
The solutions to the above equations are

F;L,v(p) = X(Pz)[P;LPu - gu,vpz] — PPy, Fé,c(p) = le/f(Pz),

Luc(p) = —ipu¥r(p®). (32)
Here x (p?) is positive for p> < 0, x (p?) and v (p?) are singular at p?> = 0 due to infrared
effects and have branch cuts for p> > 0. Since x (0_) is directly related to the norm of the
transverse gluon states, we ‘conclude’ that this norm is positive. As already announced
following ’t Hooft [1], we do not consider the difficulty related to the infrared problem,
we just regularize our theory replacing everywhere v (p?) and x (p?) by ¥ (p> — 1) and
x (p* —n) with real, positive and ‘infinitesimal’ 7. We notice that the same analysis works
without any problem in the massive cases [17].

Knowing the wave operators we can study the asymptotic fields. The Fourier trans-
formed vector field is

A% (p)

=3(p*) [@(m) (Z e (Pan(p) + p"ai(p) + pay (ﬁ))

h
+ O(—po) (Z e (=p)ay(—p) — p"a/(—p) — p"a] (—ﬁ))}
h
+(1 —ax (P8 (P (p - P)P"(O(po)as(P) — O(—poal (p)),  (33)

where aZ creates transverse vector particles (gluons) with helicity 7 = =1, aZ and aZ

create the scalar and longitudinal gluons respectively, —p* = (—1)%pH, €' (p)p, =
€,/ (p)py = 0 and 8’ denotes the derivative of Dirac’s measure.
For the ghost fields we have

Ein(p) = 8(pHIO(po)c(p) + O(—po)c'(—p)]
©in(p) = 8(PHIO(Po)E(P) — O(—po)e’ (—p)], (34)

where we have taken into account the hermiticity properties of the ghost fields.
Now, Q is defined by the following conditions:

Q10) =0, [0, an(p)] = [Q, a;(P)] = {Q, c(p)} = 0,
[0, ai(P)] = ¥ (=me(p), {0.¢(p)} = (- P)x(—may(p), (35)
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from which the Q operator is easily built and it follows that the subspace of the Fock
space generated by the creation operators aZ, al, ¢’ is the kernel of Q. The elements of
this kernel with either ‘c-particles’, or scalar gluons, or both kinds of particles lie in the
image of Q and hence have zero norm.

It remains to verify eq. (26). This is equivalent to the following equation:

, -~ B . F)
i Q,/dp AL (DT (P)—=————Cin(P)Te.c(p) =——

8ju(p) 8E(p)
- 1)
+Em(P)FEc(P):—):|
3&(p)
= [3,/@ <f§’-‘ (pr u(p)~L —E,-n(p)l“ac(p)~L
s ju(p) “sE(p)
- b
+E,-n(p)Fa,c(p):—ﬂ (36)
3&(p)
which, taking into account eqs (19) and (35) can be written as
A )
i / dp (p“an(p)wwz)ru,v(p) I ”‘mra,c(p):—)
8jv(p) o 8E(p)
- i b
= — [ dp (A" ()T, »(p)—— — L& (p)Ts ~—) 37
/ p< in (P, (p)ayv(p) e (P)Tzc(p)p 55() (37

This identity is easily verified using eqs (31) and (32).

Thus, in conclusion we have verified that the operator Q with the desired properties
exists and hence that the S-matrix is unitary in the physical state space if this is identified
with the linear span of the Q-equivalent classes of the elements of the kernel of Q pro-
vided we consider as Q-equivalent two elements whose difference belong to the image of
0.

Beyond the definition of the renormalized theory and local operators and the S-matrix
unitarity, the third main consequence of BRS invariance is the independence of physical
amplitudes of the gauge choice. Also with respect to this point, the original BRS analysis
can be remarkably simplified. Indeed, the original BRS analysis is based on the operator
translation of the parametric equations for the Green functions and its most difficult point
is the characterization of the operator corresponding to a gauge parameter derivative. The
source of this difficulty is the explicit dependence of eq. (19) on the gauge parameter «.
This is however easily avoided by introducing the above-mentioned Lautrup—Nakanishi
multiplier field b and replacing the third transformation in eq. (16) by ¢ — ¢ — i€b.

The introduction of the multiplier b implies modifying the action in eq. (3) into

G,.,G"Y b? _
A = /dx [—’T +boA + ozT - BMCDMC} (), (38)

adding to the source action in eq. (8) the further term A4;, = f dx J (x)b(x), and modifying
eq. (16) into
cAC

A" — A" +ieD%c, c—>c+ie 7

¢ — c—ieb. 39)
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The new BRST transformations define, through eq. (17), a s, operator which is strictly
local and nilpotent (notice that s acting on bosonic Hermitian fields gives fermionic Her-
mitian operators while, acting upon fermionic Hermitian fields it gives anti-Hermitian
bosonic operators). The identity in eq. (19) is changed to

3
/dx|: 55—5 ](x)ZESanzO, (40)

which does not depend exphcltly on any gauge fixing parameter and hence constrains all
theories with the same gauge field content.

Now the action .4;, appears as the sum of its gauge invariant part that we combine with
the source terms given in eq. (18), into:

. oy
A:/dx[—%+y“Duc+§¥} (x), (41)

and the gauge fixing part which is:

ab? .
Age = [ dx [bIA + 5 *cDyc | (x)

[ dx[ (3A+a )m} “2)

Aiming at an analysis of physically relevant parameters it is worth comparing A+Agf with
the most general renormalizable action compatible with eq. (40). For this we translate
eq. (40) in terms of the effective action getting the Zinn-Justin [18] equation:

2] D) D R D T
de| 22 120 % ) =o. 43
/ |:8A Sy# + 8¢ bc (Sc:|( ) (43)

Restricting this equation to the tree approximation, we obtain the same equation for the
classical acti(_)n. Given an action A solution to eq. (43) we denote by A its restriction to
b = ¢ = 0. A satisfies the equation

SA 5 sAS

which also defines the nilpotent functional differential operator D j.

For simplicity we assume invariance under the action of the rigid gauge group (colour
symmetry).

The general renormalizable solution to this equation is known and easily verified to be
equivalent, up to field and coupling constant multiplicative renormalization, to A. Thus,
without loss of generality we can identify A with A. After this identification the operator
D 4 coincides with § defined in eq. (23).

Taking into account the renormalizability constraint and Faddeev—Popov charge neu-
trality, one sees that A — A = F cannot depend on the external fields y,, and ¢ while it
must depend upon either b or ¢. Therefore, writing eq. (43) in terms of F we have

[E — /dx (bi_) (x)] F =0, (45)
éc
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which implies that

F = |:E — /dx (b%) (x)i| /dxX[A, b, c,c], (46)

/dxX[A, b,c,cl(x) = /dx [E(alaA + arb + agA2 +asc N c)] (x),
47)

with

and we have denoted by ¢A? the contraction d,, ﬂ,yEaA’; Ay, assuming that an invari-
ant symmetric d tensor exists. Notice that the functional differential operator, s —
f dx (b%)(x) coincides with s, in eq. (42) and hence we have

F = s, X. (48)

In conclusion, in the case of a generic local gauge fixing choice, Yang—Mills theory
depends on seven parameters and on a renormalization scale. However, since the first
two parameters are multiplicative renormalization constants and since the derivative of
the classical action with respect to @; with i = 1, ..., 4 is given by 5,0, X the physical
content of the renormalized Yang—Mills theory depends, once the energy scale is given,
on a single parameter which must be identified by a suitable normalization condition, e.g.
involving the Callan—Symanzik beta function [19].

Our analysis is limited to the tree approximation, and its extension to all orders of per-
turbation theory presents technical difficulties which are however perfectly under control
(the origin of these difficulties lies in the non-quadratic nature of X which induces a non-
linear b field equation and related renormalization problems. A very general analysis of
the possible terms breaking eq. (43) or, more precisely, of the identity following from
eq. (43) after b field integration [18], is presented in [20] where the antifield formalism
[21] is exploited).

This concludes our sketchy presentation of the Yang—Mills version of the BRS analysis
of four-dimensional gauge theories. Analogous analyses have been applied to a number
of field theories that we cannot discuss in this report.

4. Conclusions

It should clearly appear from the §3 of this report that the BRS quantization method
identifies renormalized physical operators and physical states with elements of some
cohomology classes respectively associated with the s operator defined in eq. (23) and
with the charge Q in eq. (35). However, in spite of the generality of the method,
the explicit results are limited, with some very special exceptions, to renormalized per-
turbation theory and, either to strictly local operators, or to perturbative asymptotic
fields.

An example of physically interesting operators which, to my knowledge have yet to
be built even in perturbation theory, is given by the charged fields localized in space-like
cones introduced by Buchholz and Fredenhagen in 1982 [22]. The existence of these
fields is verifiable and should be verified in Abelian and non-Abelian Higgs models using
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Wilson operator product expansion and BRS invariance. I think that the perturbative con-
struction of these operators will further support the new approach to the asymptotic state
space given in [22]. In my opinion the former state of the art in which there are phys-
ical operators with a crucial role in the definition of the asymptotic state space, which,
however, have a precise physical content only in the asymptotic limit is, in a sense, para-
doxical. Even more problematic is, in my opinion, the definition of the charged fields in
the case of unbroken gauge invariance. I think that this second problem has no solution
in perturbation theory.

A more important point requiring at least a short discussion is the nature of bounds
limiting the BRS analysis to perturbation theory. Disregarding infrared problems I think
that the first major difficulty met beyond perturbation theory is due to Gribov’s horizons
[23]. Roughly speaking, the Gaussian functional measure underlying perturbation theory
is based on the identification of gauge fields with elements of a single unbounded chart of
the atlas encoding the structure of a highly non-trivial manifold [24]. One should be able
to extend the functional integration to all charts and hence to their overlapping regions.
This has been done in the trivial case of two-dimensional topological gravity [25]. From
the topological gravity results one can figure out, at a very formal level, how the functional
measure could be chosen in a four-dimensional gauge theory keeping BRS invariance
unbroken [26]. The most relevant character of this measure is its lack of locality which is
due to the fact that the distance of a field configuration from the nearest Gribov horizon
is not a local functional. In a sense, referring to the Yang—Mills case discussed in the
previous section, one has to broaden the choice of the operator X in eqs (46) and (47) by
considering suitable non-local operators. Recalling that the discovery of BRS invariance
was originated from the rigid observance of strict locality, the fact that, in order to keep
this invariance beyond perturbation theory, one has to give up strict locality in the gauge
fixing action, appears quite deceiving. However, the gauge choice independence of the
physical functional measure that follows, as we have seen, from BRS invariance should
make this loss of locality harmless. However, all this has still to be verified.

The S-matrix unitarity problem beyond perturbation theory is even more problematic.
As a matter of fact, even if a non-local version of eq. (43) holds true in the non-
perturbative theory, and hence one could still deduce relations among unphysical wave
operators, the corresponding asymptotic states could fairly well be lost due e.g. to con-
finement. If, on the contrary, the non-perturbative theory, e.g. the electroweak theory [27],
should be identified with an effective theory whose corrections are expressed in powers
of the total energy rather than of 7, S-matrix unitarity should be related to BRS invariance
in much the same way as that presented in this report.

In conclusion, if, as assumed in QCD, local gauge degrees of freedom would char-
acterize the short distance structure of the algebra of the observables, it is expected, on
account of asymptotic freedom, that this structure should still be identified by the BRS
cohomology.
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