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1. Introduction

Since I never collaborated on a paper with Raymond, I chose a topic that at least allowed
me to put his initial in the title. I have been working for a number of years on Pauli–Villars
(PV) regularization of supersymmetric theories and its applications, and I often get the
question “Aren’t you breaking BRST [1] invariance?” In the following I shall explain how
the miraculous cancellations among boson and fermion loops in supersymmetry (SUSY)
allow for the complete elimination of ultraviolet (UV) divergences by the introduction
of only chiral supermultiplets and, in the case of local supersymmetry (supergravity
or SUGRA) Abelian gauge supermultiplets. I shall also describe some applications to
phenomenology, and shall discuss conformal and chiral anomalies in supergravity, and
their cancellation in the context of effective theories from compactification of the weakly
coupled heterotic string (WCHS).

2. SUSY Yang–Mills with chiral matter

A renormalizable, globally supersymmetric, theory is defined by two types of chiral
superfields: Zi for matter, with components (zi , χ i

α, Fi ) and the Yang–Mills (YM) super-
field strengths W a

α with components (λa
α, Fa

μν, Da), where α is a Dirac index, i, a denote
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internal quantum numbers, and Fi , Da are auxiliary fields. The theory is further defined
by the superpotential:

W (Z) = 1

2
μi j Z i Z j + 1

6
ci jk Z i Z j Zk, (2.1)

and gauge transformation properties of the matter supermultiplets:

δa Z i = i(Ta Z)i , δa Zm̄ = −i(T T
a Z)m̄ . (2.2)

There are no quadratic UV divergences; these are determined by the supertrace of the
(field-dependent) mass matrix (throughout background field techniques are used and
fermions are set to zero in the background; the one-loop effective fermionic Lagrangian
can be inferred from the bosonic result by supersymmetry) which vanishes identically in
this theory:

STrM2(zi , z̄m̄, Fa
μν) =

∑

S=0, 1
2 ,1

(−1)2S(2S + 1)M2
S = 0. (2.3)

The only logarithmic UV divergences are in wave function renormalizations. In particular
the β-function is proportional to the parameter

ba = − 1

16π2
(3Ca − C M

a ) = g−3(μ)
∂ga(μ)

∂ ln μ
= g−2

a (μ)βa(μ), (2.4)

where Ca and C M
a are quadratic Casimirs in the adjoint and matter representations, respec-

tively. The superpotential (2.1) is not renormalized; with a ‘supersymmetric’ choice [2]
of gauge fixing (to be made explicit in the next section), the UV divergent contribution to
the scalar potential is


V = 1

64π2
STr M4 ln �2 = −1

2

∑

a

ba D2
a ln �2, (2.5)

which is just the supersymmetric completion of the vacuum polarization. In this gauge
the anomalous dimension (matrix) for chiral superfields Zi is given by

32π2γ
j

i = −4g2
∑

a

Ca
2 (r i )δ

j
i +

∑

kl

ckli c̄
kl j , Ca

2 (r) = dim a

dim r
Cr

a . (2.6)

The logarithmic divergences of this theory can be cancelled [3] by adding chiral PV
supermultiplets Z I , YI , ϕ

a with gauge transformation properties

δa Z I = i(T a Z)I , δaYI =−i(Y Ta)I , δaϕb = f abcϕc, (+ other reps),
(2.7)

where f abc is a structure constant of the gauge group, and superpotential couplings

WPV = 1

2
(μi j + ci jk Zk)Z I Z J + √

2gϕa(Ta Z)i YI , (2.8)

leaving BRST unbroken. Cancellation of (one-loop) UV divergences is assured provided

C M
a = (

Tr T 2
a

)
matter = Tr(T R

a )2 (2.9)
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for some real representation R because one has to give gauge invariant masses to all the
PV fields, and therefore they must form an overall real (reducible) representation which
cancels the matter contribution to (2.4) – hence the ‘other reps’ in (2.7). These additional
chiral multiplets do not have any superpotential couplings to the light chiral supermulti-
plets Zi . The condition (2.9) is satisfied in the minimal supersymmetric extension of the
Standard Model (MSSM) and its extensions, as well as in the hidden sectors [4] of such
extensions from all Z3 orbifold compactifications of the heterotic string for which the full
spectrum is known.

3. Supergravity

Supergravity is defined by the superpotential W (Zi ), which is now an arbitrary function
of Z , the real Kähler potential K (Zi , Z̄ m̄) and the gauge kinetic function fab(Zi ). Here,
it is assumed that f is diagonal (the notation X | stands for the lowest component (with
the superspace coordinate θ = 0) of the superfield X , with all fermion fields set to 0)

fab(Zi ) = f (Zi )δab, f (Zi )
∣∣ = f (zi ) = x + iy, (3.1)

which is the case for supergravity from the heterotic string. To obtain the one-loop
effective (bosonic) Lagrangian [5], we expand the action (covariantly) around a bosonic
background, and integrate over quantum fluctuations hμν, Âa

μ, ẑi in the graviton, Yang–
Mills and scalar fields, as well as fermions, ghosts and an auxiliary field α that is used
to implement the gravitino gauge fixing. For the bose sector we use smeared gauges,
defined by

Lg f = −
√

g

2
(GaGa − GμGμ)

Ga = 1√
x

[
Dμ(x Âμ

a ) + i Kim̄(T m̄
a ẑi − T i

a ẑm̄)
]

(3.2)

Gμ = 1√
2

[
∇νhμν − 1

2
∇μhν

ν − 2(Dμ z̄m̄ Kim̄ ẑi + h.c.) + 2x Fa
μν Âν

a

]
, (3.3)

while for the gravitino ψμ
α we use an unsmeared gauge

G = −γ μ(i �D − M̄)ψμ − 2Kim̄[( �Dz̄m̄ + i Fm̄)χ i + ( �Dzi + i Fi )χ m̄]

+
(

x

2
σμν Fa

μν + 1

x
γ5 Da

)
λa = 0,

δ(G) =
∫

dα exp(iαG). (3.4)

The choice (3.2) is the generalization to SUGRA of the ‘supersymmetric gauge’ men-
tioned in §2. We drop terms that vanish by virtue of the tree equations of motion; much
of this can be done a priori by adding a judicious choice of such terms to the inverse
propagators. With the above gauge fixing procedures, the one-loop action takes the form

S1 = 1

2
i STr[Dμ Dμ + H(gμν, Fμν, z)] + T−(gμν, Fμν, z), (3.5)
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where Dμ(hμν, Aμ, z) is a generalized covariant derivative, H is a generalized squared
mass matrix, and T− is the helicity-odd fermion contribution. The explicit expression for
H is invariant under all the symmetries of the SUGRA theory.

3.1 SUGRA with chiral matter

In evaluating the one-loop quadratic divergences for supergravity coupled to chiral
matter [5], we use the trace of the graviton equation of motion:

gμν

δL
δgμν

∣∣∣∣
tree

= r

2
− 2V + DμziDμ z̄m̄ = 0, (3.6)

which is equivalent to a metric redefinition that restores the Einstein term to canonical
form in this order. Here V is the scalar potential

V = Kim̄ Fi F̄ m̄ − 3M M̄, M =eK/2W (z)= Mψ, Kim̄ = ∂2 K

∂zi∂ z̄m̄
,

(3.7)

and M is an auxiliary field (the normalization for M used here differs by a factor − 1
3 from

the the usual one [6,7]) of the supergravity supermultiplet; its vev is the gravitino mass
Mψ . The one-loop quadratic divergences are determined by the sum of the supertraces
from the gravity sector and the chiral matter sector, which, using (3.6), are given by

STr Hgrav = −14|M |2+Kim̄(4Fi F̄ m̄ −3DμziDμ z̄m̄), (3.8)

STr Hχ = Nχ

(
2|M |2+Kim̄DμziDμ z̄m̄

)

−2Rim̄(Fi F̄ m̄ +DμziDμ z̄m̄), (3.9)

where Rim̄ is the Ricci tensor derived from the Kähler metric Kim̄ , and Nχ is the number
of chiral supermultiplets. To cancel the quadratic divergences we add the following PV
superfields [8]:

• chiral superfields Z I with Kähler metric KI M̄ = Kim̄ and signature ηI = −1,
• chiral superfields φα with Kähler metric Kαβ̄ = δαβ̄eαα K ,
• Abelian U (1) vector fields W n

α and U (1)-charged chiral fields eθn
which together

form massive vector fields by virtue of the super-Higgs mechanism.

These give contributions

STr H PV
χ = N ′

χ (2|M |2 + Kim̄DμziDμ z̄m̄)

+2(Rim̄ − αKim̄)(Fi F̄ m̄ + DμziDμ z̄m̄), (3.10)

STr H PV
Wα

= N ′
G[Kim̄(2Fi F̄m̄ − DμziDμ z̄m̄) − 6|M |2], (3.11)
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where

N ′
χ =

∑

C

ηφC
χ
, φC

χ = Z I , φα, θn,

N ′
G =

∑

n

ηW n
α
, α =

∑

β

ηφβ αβ. (3.12)

Cancellation of quadratic divergences is achieved with

N ′
χ = 3α + 1 − Nχ , N ′

G = α − 2. (3.13)

Full cancellation of logarithmic divergences imposes an additional constraint, giving [9]

N ′
χ = −29 − Nχ , N ′

G = −12, α = −10. (3.14)

It also requires the introduction of additional PV chiral superfields YI with Kähler metric
K I M̄

Y = K im̄ , K im̄ K jm̄ = δi
j , as well as several copies of Z I with alternating signatures.

All of these are included in the definition of N ′
χ in (3.12).

3.2 SUGRA with YM and chiral matter

Now we add to the theory Yang–Mills superfields with canonical kinetic energy terms:

f (zi ) = x + iy = g−2 − i
θ

8π
= constant. (3.15)

If the chiral multiplets have gauge couplings as in (2.2), the potential acquires a D-term


V = 1

2
x Da Da, Da = Ki (Taz)i = Km̄(T T

a z̄)m̄,

Ki = ∂K

∂zi
, Km̄ = ∂K

∂zm̄
. (3.16)

The PV superfields Z I now transform as in (2.7), and the supertraces (3.8), (3.10) and
(3.11) get the additional contributions [10]


STr Hχ = −Nχ x Da Da + 2Da[�i
i j (T

az) j + (T a)i
i ], (3.17)


STr H PV
χ = (2α − N ′

χ )x Da Da − 2Da[�i
i j (T

az) j + (T a)i
i ], (3.18)


STr H PV
Wα

= N ′
G x Da Da, (3.19)

where �i
jk is the ‘affine connection’ associated with the Kähler metric. In addition, there

is an off-diagonal mass term connecting the gaugino to the auxiliary field α introduced in
(3.4):

Mαλa = −√
x

(
Da + 1

2
Fμν

a σμν

)

= −√
x

[
Da + 1

2
(βFμν

a + iγ γ5 F̃μν
a )σμν

]
, β + γ = 1. (3.20)
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The second equality in (3.20) follows from the properties of Dirac matrices; it illus-
trates the ambiguity in defining γ5 that is present in any regularization procedure. The
‘supersymmetric’ choice is

β = 1, γ = 0. (3.21)

With this choice (3.20) matches off-diagonal squared masses that couple hμν to Âμ and the
graviton ghost cμ to the YM ghosts ca , and it allows for BRST invariant PV regularization.
The Yang–Mills sector gives a contribution

STr HYM = (1 + NG)x Da Da + 1

2
x Fμν Fμν

+NG[Kim̄
(
2Fi F̄m̄ − DμziDμ z̄m̄

) − 6|M |2], (3.22)

and (3.9) gets an additional contribution


STr Hgrav = 2x Da Da − 1

2
x Fμν Fμν. (3.23)

The terms containing the YM field strength cancel, and all UV divergences can be
cancelled [8] provided N ′

G in (3.13) and (3.14) is shifted by the amount


N ′
G = −NG . (3.24)

Full cancellation of logarithmic divergences [9] requires including the chiral superfields
YI , with Kähler metric as in §3.1 and gauge charges as in (2.7), the chiral superfields
ϕa in the adjoint representation of the gauge group that were introduced in §2, as well
as additional copies of these and other chiral superfields, such that, in particular, (2.9) is
satisfied.

3.3 Including the dilaton

Finally, we include a nontrivial gauge kinetic function:

f (zi ) = f (Zi )
∣∣ = x(zi ) + iy(zi ),

〈x(zi ) + iy(zi )〉 = g−2 − i
θ

8π
, fi = ∂i f �= 0. (3.25)

This introduces [10] an additional off-diagonal mass term that mixes gauginos with the
fermion superpartner of the dilaton f (zi ):


Mχ i λa = −i
fi

2
√

x
[Da + (βFμν

a + iγ γ5 F̃μν
a )σμν], β + γ = 1. (3.26)

In this case the ‘supersymmetric’ choice is

β = γ = 1

2
, (3.27)

which matches a squared mass term that couples the dilaton to the Yang–Mills fields, and
BRST invariant PV regularization is again possible. The YM field strength terms vanish
identically in the squared masses, e.g.,

∣∣
Mχ i λa

∣∣2 = fi f̄ i

4x
Da Da, f̄ i = K im̄ f̄m, (3.28)
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and the new contribution to the chiral multiplet supertrace is


STr Hχ = fi f̄ i

4x
Da Da . (3.29)

There is also an additional term in the gaugino connection:


Aμ
λ = −∂μy

2x

(
iδγ5 − ε

ετνρσ

24
γτγνγργσ

)
, δ + ε = 1. (3.30)

We choose:

δ = 0, ε = 1, 
Aλ
μ = 2xhνρσ γ[μγνγργσ ], (3.31)

where hμνρ is the three-form, dual to the axion y, that comes from compactification of
the ten-dimensional supergravity limit of the heterotic string. With the choice (3.31) the
connection (3.30) is a vector current. There is no associated anomaly, the QCD vacuum
angle θ is not renormalized, in agreement with earlier results [11], and the modified lin-
earity condition is respected [12] at one-loop order in the dual linear multiplet formulation
for the dilaton supermultiplet. Specifically, in the effective supergravity theory from the
WCHS, the dilaton supermultiplet f (Z) = S(s, χ s

α, Fs) is dual to a (modified) linear
supermultiplet L(�, χ�

α, bμν), where bμν is a two-form whose curl is the three-form hμνρ

in (3.31). With the choices (3.27) and (3.31), the new contributions to the YM supertrace
are


STr HYM = − fi f̄ i

4x
Da Da

− NG

2x2
[ fi f̄m̄ Fi F̄ m̄ + (∂μx∂μx + ∂μy∂μy)]. (3.32)

The D-terms in (3.29) and (3.32) cancel, and we obtain an overall contribution


STr
(
Hχ + HYM

) = − NG

2x2
[ fi f̄m̄ Fi F̄ m̄ + (∂μx∂μx + ∂μy∂μy)]. (3.33)

This contribution can be cancelled by adding [8] chiral PV multiplets πα with Kähler met-
ric K (π, π̄) = ( f + f̄ )|π |2 and/or by coupling [13] some Abelian gauge PV multiplets
to the dilaton, that is, by setting fW n

α
= en f (Z). Cancellation of (3.33) requires

Nπ − e = NG, Nπ =
∑

α

ηπα , e =
∑

n

ηnen. (3.34)

Cancellation of logarithmic divergences requires [13] the second mechanism:

Nπ = 0, e = −NG . (3.35)

Large PV masses for the chiral superfields Z I , YI , ϕ
a, φα , as well as those needed to

assure that the condition (2.9) is satisfied, are generated by including gauge invariant
bilinears of these superfields in the superpotential, and large PV masses for the (W n

α , θn)
arise from the Abelian super-Higgs mechanism. The squared cut-offs in the UV divergent
terms are replaced by the relevant squared PV masses, and one obtains an expression of
the form

Ltree + 1-loop = Ltree(g
R
μν, K R, gR

a ) + operators dim ≥ 6. (3.36)

All the higher dimension terms that cannot be absorbed into renormalizations (denoted by
the superscript R) are associated with UV logarithmic divergences.
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4. Two applications

In this section I shall describe applications to particle phenomenology of the regulariza-
tion procedure described above. Both cases illustrate the sensitivity of the scalar potential
to the choice of PV masses, which cannot be completely fixed by the requirement of UV
finiteness.

4.1 Taming large quadratic divergences

It has been pointed out [14,15] that the loop suppression parameter

ε = 1

16π2
(4.1)

may be compensated by large coefficients, leading to significant effects from loop cor-
rections. Specifically, once (3.6) is imposed, the quadratically divergent correction to the
scalar potential includes the terms:

VQ = 1

2
ε�2STr Hnonderiv 
 ε�2[|M |2 (

Nχ − 3NG − 7
)−NG M2

λ−Rim̄ Fi F̄ m̄].
(4.2)

Typical WCHS orbifold compactifications have many more chiral multiplets than gauge
multiplets: Nχ

>∼ 300, NG <∼ 65. Since in many gravity-mediated supersymmetry-
breaking scenarios the gaugino mass Mλ is much smaller than the gravitino mass

M2
λ = 1

4
fi f̄ i M2 � M2, (4.3)

the first term in (4.2) suggests the possibility of a significant positive contribution to the
vacuum energy [14], perhaps curing the problems with classes of models that have neg-
ative vacuum energy at tree level. However, in the regulated theory (4.2) is replaced
by

VQ →ε[|M |2(Nχ�2
χ−3NG�2

G−7�2
grav)−NG M2

λ�′2
G − Rim̄ Fi F̄ m̄�′2

χ ]+ · · · ,

(4.4)

where the ellipsis indicates finite terms proportional to M2
PV such that the one-loop

quadratically divergent corrections are completely absorbed into renormalizations:

LQ = Ltree(g
R
μν, K R)−Ltree(gμν, K )+ O(ε2), K R = K + ε

∑

A

�2
A. (4.5)

The effective squared cut-offs �2
A in (4.4) and (4.5) are determined by the PV masses:

�2
A = CA(ηi M2

i ln M2
i )A,

(
∑

i

ηi M2
i

)

A

= 0, (4.6)

where CA is a constant. Several remarks are in order [16].

• The sign of �2
A is indeterminate [17] if there are five or more terms in the sum, which

is generally required to eliminate all the UV divergences of SUGRA.

882 Pramana – J. Phys., Vol. 78, No. 6, June 2012



BRST invariant PV regularization of SUSY Yang–Mills and SUGRA

• If Nχ ∼ ε−1 one has to sum the leading (ε�2)n terms [16].
• Supersymmetry dictates that the higher-order terms complete the Lagrangian

Ltree(gR
μν, K R) with K R given by (4.5).

So, for example, if M2
i are field-independent constants, we just get

VQ = eK+
K
(
Wi K im̄ W̄m̄ − |W |2) + 1

2
x Da Da,

Wi = ∂

∂zi
W = −e−K/2 Kim̄ F̄ m̄ . (4.7)

If, in addition, supersymmetry is broken only by F-terms, 〈Da〉 = 0, the vacuum energy
is just multiplied by a positive constant.

It has also been pointed out [15] that the last term in (4.2) or (4.4) can be significant
because it involves a sum over all the chiral supermultiplets. The Kähler potential for
the untwisted sector from orbifold compactification of the heterotic string is not known
beyond leading (quadratic) order, and could include terms that induce flavour changing
neutral current (FCNC) effects in the observable sector. Experimental limits on these
effects therefore imply restrictions on the Kähler potential. A sufficient condition [16]
for a ‘safe’ Kähler potential is the presence of isometries of the Kähler geometry. For
example, the Kähler potential for an untwisted sector n from orbifold compactification
takes the form

K n = − ln

(
T n + T̄ n̄ −

Nn∑

A=1

|�A
n |2

)
, (4.8)

which has an SU (Nn + 1, 1) symmetry that is necessarily also a symmetry of the Ricci
tensor:

Rn
im̄ = (Nn + 2)K n

im̄ . (4.9)

Alternatively, the suppression of FCNC effects can be achieved through a judicious choice
of PV masses [16].

4.2 Anomaly-mediated SUSY breaking

One-loop contributions to soft supersymmetry breaking parameters for the superpartners
of the Standard Model particles can be important, particularly in models where they
are suppressed at tree level. If they arise only through loop effects, the mechanism for
supersymmetry is referred to as ‘anomaly mediation’.

The one-loop contribution to gaugino masses ma is independent of Planck-scale
physics, and is completely determined by the properties of the effective low-energy
(sub-Planck scale) theory. The result is [18–20]


ma(μ) = −3βa(μ)M − g2(μ)

14π2
F j

[
(Ca − C M

a )K j + 2
∑

i

Ci
a∂ j ln Kiı̄

]
.

(4.10)

The term proportional to the β-function (2.4) is related [21,22] to the conformal anomaly,
in that it arises from the running of the coupling constant from the Planck scale to the
scale μ, and has been shown to be exact to all orders in perturbation theory.

Pramana – J. Phys., Vol. 78, No. 6, June 2012 883



Mary K Gaillard

Writing the superpotential in the form

W (Z) =
∑

i jk

Wi jk Z i Z j Zk +
∑

i j

μi j Z i Z j + O(Z4), (4.11)

supersymmetry breaking generates the so-called A and B terms in the scalar potential that
are, respectively, cubic and quadratic in the scalar fields zi :

V 
 1

6

∑

i jk

Ai jk Wi jk zi z j zk + 1

2

∑

i j

Bi jμi j z
i z j + h.c. (4.12)

Neglecting small flavour mixing in the anomalous dimension matrix (2.6), the one-loop
contributions to the parameters A and B are [20,23]


Ai jk(μ) = (γi + γ j + γk)μM + ai jk ln(MPV/μ), (4.13)


Bi j (μ) = (γi + γ j )μM + bi j ln(MPV/μ). (4.14)

The first term in each expression is the conformal anomaly contribution [21,22], again
valid to all orders in perturbation theory. The (field-dependent) parameters a and b vanish
if there are no tree-level soft terms in the observable sector.

In contrast to the above, the supersymmetry-breaking (‘soft’) scalar squared masses m2
i

are strongly dependent on Planck scale physics [20]:


m2
i = 9γi |M |2 + νi (m

PV
soft) + μi , (4.15)

where the last term vanishes if there is no tree-level SUSY breaking in the observable
sector. The first, ‘conformal anomaly’, term was not found in earlier analyses [21,22];
they found instead a universal two-loop contribution proportional to the derivative of the
anomalous dimension matrix γ . The second term vanishes only if the tree-level Pauli–
Villars soft squared masses vanish, which is generally not the case. In the ‘sequestered
sector’ model of Randall and Sundrum [22] the first term is exactly cancelled by the
second; this requires (it was noted in [24] that this result rests on the assumption that
〈Fi Ki 〉 is negligible) a very special form of the hidden sector scalar potential, as well as
of PV masses. The spurion analysis [21] missed the second term in (4.15) because of an
assumption of holomorphicity that is not borne out by the explicit PV calculation [20].
The sensitivity of soft scalar masses to Planck scale physics can easily be understood in
the framework of PV regularization. Superpotential and gauge couplings of light chiral
superfields are regulated by the PV fields �A = Z I , YI , ϕ

a , which obtain large PV masses
through gauge invariant superpotential couplings to other fields �′

A:

WPV 
 μA�A�′
A, m2

A = m2
A′ = eK K AĀ

� K �′
B B̄ |μA|2. (4.16)

The finiteness requirement constrains the Kähler metric for �A, but not for �′
A, since they

need not have any couplings to light sector fields, except for electromagnetic couplings if
they carry gauge charges. Since all gauge-charged PV fields contribute to the β-functions
(2.4), the PV loop contribution to the gaugino masses is uniquely fixed. On the other
hand, the fields �′

A need not have any superpotential couplings to the light fields. So the
constraint that the UV divergence associated with the anomalous dimension matrix γ van-
ishes places no restriction on their Kähler metric, and no restriction on the corresponding
PV masses, and so 
m2

i is undetermined.
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There is a parallel situation concerning the Kähler chiral and conformal anomalies
associated, respectively, with linear and logarithmic UV divergences. Supergravity is
classically invariant [25] under the Kähler transformations

K → K + F(Z) + F̄(Z̄), W → e−F W,

χ → eiImF/2χ, λ → eiImF/2λ, ψ → eiImF/2ψ, (4.17)

which are anomalous at the quantum level. The chiral anomaly of the Yang–Mills
Lagrangian associated with the phase transformation on the fermions in (4.17) forms
an F-term superfield component together with the conformal anomaly associated with
the β-functions; this operator is completely fixed by the requirements of UV finiteness
and supersymmetry, and is independent of Planck scale physics or the regularization
procedure. By contrast, the conformal anomaly associated with the γ -functions is a D-
term superfield component, with no chiral counterpart, and depends on the details of the
regularization procedure, which in turn should parametrize Planck scale physics. The
WCHS is perturbatively invariant under all gauge transformations, as well as a group of
transformations on the chiral superfields Z = T n,�i ,

T n → f (T n), �i → g(qi
n, T n)�i , (4.18)

called T-duality, that effects Kähler transformation (4.17) with F = F(T n), with the
fields T n known as ‘Kähler moduli’, and qi

n the ‘modular weights’ of �i . However, the
effective quantum field theory is anomalous under T-duality. The regularized theory is
anomaly free if PV mass terms respect the classical symmetries. This is not possible in
the case of T-duality, or for an anomalous Abelian symmetry, U (1)X , that is present in
almost all realistic theories that break part of the gauge symmetry at the string scale by
Wilson loops. For example, the PV superfield φβ gives a contribution to the quadratically
divergent one-loop Lagrangian

(LQ)φβ ∝ STr Hφβ 
 (1−2αβ)(Kim̄DμziDμ z̄m̄ − x Da Da)+2Daqβ

X . (4.19)

To obtain an invariant mass, φβ must have a superpotential coupling to another field φγ

with

αβ + αγ = 1, qβ

X + qγ

X = 0, (4.20)

such that the contribution from φγ exactly cancels (4.19). One could instead restore T-
duality by making the mass parameters in (4.16) field-dependent: μ → μ(T n); this would
be interpreted as a threshold correction [26]. However, such corrections are known to be
absent [27] in, for example, Z3 and Z7 orbifold compactifications.

5. Anomalies and anomaly cancellation in supergravity

It has long been known how to cancel the T-duality [28] and U (1)X [29] anomalies
involving Yang–Mills field strength bilinears. The full anomaly structure of PV regu-
lated supergravity has been determined only recently [30]; its detailed form, and therefore
the possibility of anomaly cancellation, depends on the choice of PV couplings. It was
recently shown [31] that for specific Z3 and Z7 compactifications, with no Wilson lines
and therefore no anomalous U (1)X , the string theory anomaly is completely cancelled by
the four-dimensional version of the Green–Schwarz mechanism [32]. If PV regularization
can be a faithful parametrization of the higher string and Kaluza–Klein modes that render
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the full theory finite, there should be a choice that realizes this result at the field theory
level; determining this prescription could in turn restrict the loop corrections to the scalar
potential discussed in §4.

5.1 Anomalous YM couplings, their cancellation and two applications
to phenomenology

Under T-duality and U (1)X , the shift in the YM Lagrangian is given, in the Kähler U (1)

superspace formulation [7] of SUGRA, by the expression


LYM loop = 1

8

∑

a

∫
d4θ

E

R

[∑

n

cn
a H(T n)+ca�X

]
(W α

a W a
α )a +h.c., (5.1)

where

cn
a = 1

8π2

[
Ca−

∑

i

Ci
a(1−2qi

n)
]
, ca �=X = 1

4π2
Tr T 2

a TX , cX = 1

12π2
Tr T 3

X .

(5.2)

The anomaly is cancelled by a four-dimensional version of the Green–Schwartz (GS)
mechanism; the dilaton is no longer invariant under these transformations:


S = −bH(T ) − c�X . (5.3)

Then the variation (5.1) is cancelled by the variation of the tree Lagrangian:

LYM tree = 1

8

∫
d4θ

E

R
S
∑

a

(W α
a W a

α )a + h.c., 
LYM tree =−
LYM loop. (5.4)

To make the theory fully invariant, the dilaton Kähler potential K (S + S̄) is replaced by

K [S + S̄ + V (T, T̄ ) + cVX ],
where VX is the U (1)X vector superfield:


VX = �X + �̄X , (5.5)

and the function V (T, T̄ ) satisfies


V = H + H̄ . (5.6)

The full T -dependence of V is determined by matching [12] string and field theory
calculations of the Im t F · F̃ vertex:

V (T, T̄ ) = −
∑

n

ln(T n + T̄ n̄). (5.7)

Anomaly cancellation requires

ca = c = Tr TX

96π2
∀a, cn

a = b∀a, n (5.8)
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for compactifications with no threshold corrections, such as Z3 and Z7 orbifolds. For
those with string loop threshold corrections of the form

Lth =
∑

n

bn
a

8

∫
d4θ

E

R
f (T n)

∑

a

(W α
a W a

α )a + h.c., 
 f (T n) = H(T n),

(5.9)

the second condition in (5.8) is replaced by

bn
a = b − cn

a . (5.10)

Note that the one-loop calculation yields a supersymmetric anomaly; the higher loop
corrections to the β-function are encoded in the PV cut-off demanded by supersymmetry
[12,33,34]; for example

�2
G = eK/3 =

[
16(Re s)

∏

n

(Re tn)
]−1/3 = g−4/3 R−2

comp = g−4/3�2
comp,

(5.11)

where the subscript ‘comp’ refers to the compacification/radius scale.
These results have two important applications to phenomenology:

• Matching the coefficient of Fa
μν · Fμν

a to the two-loop RGE invariant [11] of super-
symmetric Yang–Mills theories fixes [12,35] the gauge unification scale; this gives
in the M S scheme

μ2
unif = m2

string

2e
= g2m2

Planck

2e
∼ 2 × 1017 GeV. (5.12)

This is an order of magnitude lower than what is obtained by extrapolating from low
energy data in the context of the minimal supersymmetric extension of the Standard
Model, but in effective theories from superstrings one expects heavy states that are
vector-like under the Standard Model gauge group, as well as corrections to the
dilaton Kähler potential from string nonperturbative effects and/or field theory loop
effects.

• The effective Lagrangian Leff(Ua,�
i ) for gaugino condensates Ua � (W α

a W a
α )hid

and matter condensates �i � ∏
A(φA)

ni
A

hid in a strongly coupled hidden sector can
be constructed by matching [36] the anomalies of Leff to (5.1), thus providing a
mechanism for supersymmetry breaking.

5.2 Full anomaly cancellation?

The linear divergences of supergravity can be cancelled by the PV fields introduced in
§3, except for some from nonrenormalizable terms in the ψ, λ connections. The residual
chiral anomalies associated with the latter terms form supersymmetric (F-term) anomalies
together with residual conformal anomalies proportional to total divergences, provided the
cut-off is field-dependent:

�(Z) = eK/4�0, �0 → ∞. (5.13)
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The resulting effective theory is fully finite, with the remainder of the anomalies arising
from a subset of chiral PV superfields with noninvariant masses (4.16), that can be chosen
to have a simple Kähler metric. The total anomaly in the regulated theory is then given
by [30,37]


L = 1

8π2

[
Tr η�(T n,�X )

(
1

3
�W +�YM+· · ·

)
+H(T ) (�W +· · ·)

]
+ h.c.

= 
LYMloop+ 1

8

(∫
d4θ

E

R

[ ∑

n

cn H(T n)+c�X

]
W αβγ Wαβγ + h.c.

)
.

+ · · · . (5.14)

The first term in the first line of (5.14) comes from the noninvariant PV masses, and the
second term from the variation of the effective cut-off:


 ln MPV = �, 
K = H + H̄ . (5.15)

�YM and �W are Chern–Simons superfields whose chiral projections are, respectively,
the Yang–Mills and curvature superfield strengths:

(D̄2 − 8R)�YM =
∑

a �=X

W α
a W a

α , (D̄2 − 8R)�W = W αβγ Wαβγ . (5.16)

The terms proportional to �YM are just those found in (5.1), and can be cancelled as in
§5.1. Where threshold corrections are present, these can be included by an appropriate T -
dependence in the PV masses. The constants cn and c are determined by the requirement
that on-shell quadratic UV divergences vanish; c is given by (5.8), and

cn = 1

192π2

(
2
∑

A

q A
n − Nχ + NG − 21

)
. (5.17)

We have checked [37] for specific Z3 and Z7 orbifolds, with [38] and without [31] Wilson
lines, that cn = b, so the term proportional to �W can also be cancelled by the GS
mechanism, provided the tree Lagrangian contains a term

L tree 
 −
∫

d4θ E(S + S̄)�W , (5.18)

which is indeed present in effective supergravity from the heterotic string. The ellip-
sis in the second parentheses in (5.14) represents ‘D-term’ anomalies from additional
logarithmic divergences of the form

L1 loop 
 ∂μOμ ln �2; (5.19)

these have not yet been completely determined. The ellipsis in the first parenthesis in
(5.14) represents terms nonlinear in the parameters of anomalous transformations. Their
coefficients depend on the detailed choice of the PV Kähler potential, and therefore of the
PV masses. The challenge is to find a choice that mimics the string result [31]. It may
also be the case that full cancellation of the anomalies requires constraints on the Kähler
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Figure 1. Raymond’s farewell party at Les Houches, 1981.

potential for the twisted sector, analogous to the constraint (2.9) on gauge charges that
is required for cancellation of UV divergences. Resolving these questions would have
important implications for the phenomenological issues discussed in §4.

6. Afterword

Although Raymond and I have never written a paper together, we did have one very suc-
cessful collaboration. Of the 51 students at the 1981 Les Houches summer school (figure
1) that we co-directed, at least 38 (some at this meeting) are still active in particle physics,
and many are leaders in the field, not just in terms of scientific productivity, but also in
terms of service to the scientific community.

Bonne Anniversaire Raymond!
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