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Abstract. The exact solutions for the two- and N -dimensional Schrödinger equation have been
rederived for the potential V (r) = αr2d−2 − βrd−2 by Nikiforov–Uvarov method. Specific results
are presented for (i) the hydrogen atom and (ii) an isotropic harmonic oscillator. The dimensionality
of the problem is seen to enter into these relations in such a way that one can immediately verify
the corresponding three-dimensional results. The local accidental degeneracies are also explained
for the two- and N -dimensional problems.
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1. Introduction

Many of the physical phenomena of nature are characterized by some basic differential
equations. For example, quantum mechanical phenomena are described by Schrödinger’s
equation, which dictates the dynamics of some quantum systems represented by a
Hamiltonian operator. One is primarily interested in finding all eigenvalues and eigen-
states of such Hamiltonians. As a consequence, finding a large class of analytically ex-
actly solvable quantum systems is an important goal and this search has already been
initiated by Schrödinger using the factorization method [1,2].

Recently, there has been renewed interest in solving simple quantum mechanical sys-
tems within the framework of the Nikiforov–Uvarov (NU) method [3]. This algebraic
technique is based on solving the second-order linear differential equation which has
been used successfully to solve Schrödinger, Dirac, Klein–Gordon and Duffin–Kemmer–
Petiau wave equation in the presence of some well-known central and non-central
potentials [4–13].
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In this paper, we focus our attentions to deal with the Hamiltonians

H = 1

2M
P2 + αr2d−2 − βrd−2, α, β > 0, (1)

where P2 = −�2, r = |r| and d is a positive rational number, have been shown [14,15] to
admit local accidental degeneracies in all dimensions: For various choices of the param-
eters, there are more bound states with energy E = 0 than expected from rotational
invariance. Mayrand and Vinet [16] have provided a complete group-theoretic analysis of
the quantum dynamics in two dimensions and, in particular, have observed that the man-
ifest O(2) rotational invariance of the eigenvalue equation Hψ = Eψ , is enlarged to an
SU(2) symmetry on the null space of H . They also have shown that the E = 0 degenerate
solutions describing bound states are connected to each other through the action of SU(2)
generators and parity transformation thereby explaining the local accidental degeneracy.

In the present work, our main objective is to solve Schrödinger equation by NU [3]
method which is an alternative treatment [17–19] of the Schrödinger equation for the
potential V (r) = αr2d−2 − βrd−2 in two and also N dimensions at E = 0 eigenvec-
tors. We have also studied the accidental degeneracies of the zero energy levels for this
potential in two and N dimensions.

This paper is organized as follows: After a brief introductory discussion of the NU
method in §2, we obtain the eigenvalues and eigenfunctions for the potential V (r) =
αr2d−2 − βrd−2 for two dimensions in §3 and that for N dimensions in §4 and finally
conclusions have been drawn in §5.

2. Basic equations of Nikiforov–Uvarov method

The NU [3] method is based on reducing the second-order differential equation to a gen-
eralized equation of hypergeometric type. In this sense, the Schrödinger equation, after
employing an appropriate coordinate transformation s = s(r), transforms to the following
form:

ψ ′′
n (s) + τ̃ (s)

σ (s)
ψ ′

n(s) + σ̃ (s)

σ 2(s)
ψn(s) = 0, (2)

where σ(s) and σ̃ (s) are polynomials, at most second degree, and τ̃ (s) is a first-
degree polynomial. To find the particular solution of eq. (2), one can use the following
transformation as

ψn(s) = φn(s)yn(s) (3)

leading to a hypergeometric-type equation such as

σ(s)y′′
n (s) + τ(s)y′

n(s) + λyn(s) = 0, (4)

where

σ(s) = π(s)
φn(s)

φ′
n(s)

, (5)

τ(s) = τ̃ (s) + 2π(s), τ ′(s) < 0. (6)
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Here, the most significant point at this stage is that prime factor of τ(s) shows the differ-
entials at first degree and must be negative to reproduce physically acceptable λ-values
which is defined as

λ = λn = −nτ ′(s) − n(n − 1)

2
σ ′′(s), n = 0, 1, 2, 3, .... (7)

It is to be noted that λ or λn is obtained from a particular solution of the form yn(s) which
is a polynomial of degree n and satisfies the Rodrigues relation [20]

yn(s) = Bn

ρ(s)

dn

dsn

(
σ n(s)ρ(s)

)
. (8)

In this equation, Bn is the normalization constant and the weight function ρ(s) satisfies
the condition

d

ds
(σ (s)ρ(s)) = τ(s)ρ(s). (9)

Here, the function π(s) and the parameter λ are defined as

π(s) = σ ′ − τ̃

2
±

√(
σ ′ − τ̃

2

)2

− σ̃ + kσ, (10)

λ = λn = k + π ′(s), (11)

where π(s) obviously is a polynomial depending on the transformation function s(r) and
the determination of k is the essential point in the calculation of π(s), for which the
discriminant of the square root in eq. (10) is set to zero so that, the expression of π(s)
becomes the square of a polynomial of first degree. In this case, an equation for k is
obtained. After solving this equation of k, the obtained values of k are substituted in
eq. (11) to find the values of λ. Then, by comparing eqs (7) and (11), one can obtain the
values of λn .

It is well known that many special functions of mathematics represent solutions to
differential equations of the form in eq. (2) where the function τ̃ /σ and σ̃ /σ 2 are well
defined for any particular function [21]. Bearing this in mind, we proceed first with a
transformation of Schrödinger equation to the one similar to eq. (2).

3. Eigenfunctions and eigenvalues in two dimensions

In two dimensions, the Hamiltonian given in eq. (1) reads in polar coordinates as

H = −1

2

(
∂2

r + 1

r
∂r + 1

r2
∂2
θ

)
+ V (r), (12)

where

V (r) = αr2d−2 − βrd−2. (13)

(We have set the mass h̄ = M = 1). We shall be concerned with the zero-energy
eigenspace of this operator, that is with the set of the solution to

H |ψ〉 = 0. (14)
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Let us point out immediately that eq. (14) encompasses two familiar problems, i.e. the
Schrödinger equations for particles in a Coulomb or harmonic oscillator potential. Indeed
for d = 1, eq. (14) reduces to

(
− 1

2
�2 − β

r

)
|ψ〉 = −α|ψ〉, (15)

while for d = 2, it becomes
(

− 1

2
�2 + αr2

)
|ψ〉 = β|ψ〉. (16)

In each of these cases, one of the coupling constants plays the role of energy eigenvalue.
Separation of variables is achieved by supplementing eq. (14) with

L|ψ〉 = m|ψ〉, m ∈ Z , (17)

where L = −i∂θ is the angular momentum operator. The single valuedness of |ψ〉
requires m to be an integer.

In order to apply the NU method, we rewrite eq. (14) using

|n, m〉 = ψn,m = Rn(r)eimθ (18a)

and a new variable of the form s = −√
(2α/d)rd , like

d2

ds2
Rn(s) + d

ds

d

ds
Rn(s) + 1

d2s2

(
2βd√

2α
s − d2s2 − m2

)
Rn(s) = 0 (18b)

which leads to a hypergeometric-type equation. After comparing of eq. (18b) with eqs (2)
and (3), we obtain the following definitions:

Rn(s) = φn(s)yn(s), (19a)

and

τ̃ (s) = d, σ (s) = sd, σ̃ (s) = 2βd√
2α

s − d2s2 − m2. (19b)

Substituting these values into eq. (10), we obtain π(s) function as

π(s) = ±
√

d2s2 +
(

kd − 2βd√
2α

)
s + m2. (20)

To find the value of k, the discriminant of eq. (20) under the square root has to be zero, so
that the expression becomes the square of a polynomial of first degree. For this, we put

d2s2 +
(

kd − 2βd√
2α

)
s + m2 = 0. (21)

Now, solving eq. (21) we obtain the values of s as

s = 1

2d2

⎛

⎝−
(

kd − 2βd√
2α

)
±

√(
kd − 2βd√

2α

)2

− 4m2d2

)⎞

⎠ . (22)
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Again, for our purpose the value of k will be obtained by solving
(

kd − 2βd√
2α

)2

− 4m2d2 = 0. (23)

and we get the double roots of k from eq. (23) as

k± = 2βd√
2α

± 2|m|. (24)

Substituting the acceptable value k− into eq. (20), the acceptable value of π(s) is
obtained as

π−(s) = −sd + |m|. (25)

Here, we select π−(s) for which the function τ(s) in eq. (6) has a negative derivative.
Therefore, the function τ(s) satisfies these requirements, with

τ−(s) = d − 2sd + 2|m|, τ ′(s) = −2d. (26)

By putting the values of τ ′−(s), σ ′′(s), π ′−(s) and k− into eqs (7) and (11), we get the
values of parameter λ

λn = 2nd (27)

and

λ = 2βd√
2α

− 2|m| − d. (28)

From eqs (27) and (28), we get a quantization condition like

β

d
√

2α
− d + 2|m|

2d
= n, n = 0, 1, 2, 3, ....; m = 0,±1,±2,±3, .... (29)

Let us now find the corresponding eigenfunctions for this potential. Due to the NU
method, the polynomial solutions of the hypergeometric function yn(s) depends on the
determination of the weight function ρ(s) which satisfies the differential equation (9).
Putting the values of τ(s) and σ(s) in eq. (9) and solving it, we obtain the weight function
ρ(s) as

ρ(s) = 1

d
s2|m|/de−2s . (30)

Substituting the values of σ(s) and ρ(s) into the Rodrigues relation given in eq. (8), the
polynomial solution yn(s) of eq. (4) is obtained in the following form:

yn(s) = Bnlds−2|m|/de2s dn

dsn

(
sn+(2|m|/d)e−2s

)
, (31)

where Bn is the normalization constant. Again, the polynomial solution yn(s) given in
eq. (31) can also be expressed in terms of the associated Laguerre polynomials as

yn(s) = Bdn+1n!L2|m|/d
n (2s). (32)

By substituting π−(s) and σ(s) in eq. (5) and solving it, we get φn(s) as

φn(s) = s|m|/de−s . (33)
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Again substituting the values of the polynomial solution yn and φn(s) in eq. (19a), we get
the radial solution of eq.(18b) as

Rn(s) = Ans|m|/de−s L2|m|/d
n (2s), (34)

where An is the normalization constant. An orthonormalized basis of wave functions for
the bound states with energy En,m = 0 can be obtained by substituting the values of Rn(s)
in eq. (18a) as

|n, m〉 = ψn,m = Cn,meimθr |m|e(−√
2α/drd )L2|m|/d

n

(

2

√
2α

d
rd

)

, (35)

where Cn,m is the normalization constant. When eq. (29) is satisfied, the degeneracies
among the bound states are observed. Taking d = d1/d2 with d1 and d2 two relatively
prime positive integers, eq. (29) can be written in the form β = (1/d2)

√
2α(D + (d1/2)),

with D = d1((βd2/d1

√
2α)− 1

2 ) taken to be the non-negative integer D = nd1 +|m|d2. It
is then easy to conclude that the states |n, m〉 and |n′, m ′〉 belong to the same zero-energy
eigenspace provided (n′ − n)d1 = (m − m ′)d2. Actually, the states ....|2n − n′, 2m −
m ′〉, |n, m〉, |n′, m ′〉, |2n′ − n, 2m ′ − m〉, .... (if admissible) will then all be degenerate.
Restrictions arise from the fact that the quantum numbers n and m must satisfy 0 ≤ n ≤
D/d1, 0 ≤ |m| ≤ D/d2. It should be stressed that these accidental degeneracies are local;
they appear only for the level E = 0. In fact, with d = d1/d2 fixed, it is seen from
β = (1/d2)

√
2α(D + (d1/2)) that different coupling constants α and β, hence different

potentials, correspond to different values of D. In the special cases where d = 1 and 2,
we have already noted that one of the coupling constants can be taken to be an energy
eigenvalue. In this alternative interpretation, different D correspond to different energies
and accidental degeneracies are then present for every level. This is of course well known
to happen for the Coulomb and harmonic oscillator problems; these are, however, the
only cases within the class of potentials considered for which such a reinterpretation is
possible and global accidental degeneracy seen.

3.1 The special cases d = 1 and 2

We briefly indicate in this section how the Coulomb and harmonic oscillator problems fit
as special cases in our analysis.

3.1.1 The coulomb potential (d = 1). For d = 1, the Hamiltonian given in eqs (12) and
(13) becomes H = HC + α with

HC = −1

2

(
∂2

r + 1

r
∂r + 1

r2
∂2
θ

)
− β

r
. (36)

The equation H |ψ〉 = 0 is identified as the Schrödinger equation HC|ψ〉 = E |ψ〉 for a
particle moving in a β/r potential in two dimensions [8]. The energy eigenvalue E is −α.
The spectrum

E = −α = − β2

2
(
n + |m| + 1

2

)2 (37)
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and the wave function

ψn,m = Cn,meimθr |m|e−√
2αr L2|m|

n (2
√

2αr), (38)

where the normalization constant

Cn,m = (−1)n 1√
2π

(2
√

2α)|m|+1

√
�(n + 1)

(2n + |m| + 1)�(n + 2|m| + 1)
. (39)

3.1.2 The harmonic oscillator potential (d = 2). For d = 2, the Hamiltonian given in
eqs (12) and (13) becomes H = Hh.o. − β with

HC = −1

2

(
∂2

r + 1

r
∂r + 1

r2
∂2
θ

)
+ αr2. (40)

In this case, the equation H |ψ〉 = 0 is identified as the Schrödinger equation Hh.o.|ψ〉 =
E |ψ〉 for a particle moving in a two-dimensional harmonic well [22]. The energy
eigenvalue E = β. The spectrum

E = β = √
2α

(
n + |m| + 1

2

)2

(41)

and the wave function

ψn,m = Cn,meimθr |m|e−√
2αr2

L2|m|
n (2

√
2αr2), (42)

where the normalization constant

Cn,m = (−1)n(2α)|m|+1/4

(
n!

π(n + |m|)!
)1/2

. (43)

4. Eigenvalues and eigenfunctions in N dimensions

In this article, we use NU method to deal with the N -dimensional (N ≥ 3) Schrödinger
equation and obtain the eigenstate and eigenvalue for the potential given in eq. (13). The
extension sought by us, although straightforward, is quite instructive because laws of
physics in N spatial dimensions may often lead to insights concerning laws of physics in
lower dimensions [23–25].

Consider the motion of a particle of mass M in an N -dimensional Euclidian space. The
time-independent Schrödinger equation for any integral dimension is given by [23–25]

(
− h̄2

2M
�2

N + VN

)
ψ = Eψ. (44)

Here, the wavefunction ψ belongs to the energy eigenvalue E and �2
N and VN stand

for the N -dimensional Laplacian and potential respectively. Investigation of physical
processes based on eq. (44) is a well-studied problem and many authors proceed by using
the standard central potential V (r) = αr2d−2 − βrd−2 in place of VN . Here r represents
the N -dimensional radius (�N

i x2
i )1/2. Going over to a spherical coordinate system with

N − 1 angular variables and one radial coordinate we can write

ψ = R(N )
n,l (r)Y M

l (θi ), (45)
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where Y M
l (·) represents contributions from the hyperspherical harmonics that arise in

higher dimensions. The eigenvalues and eigenfunctions for generalized angular momen-
tum operators in N -dimensional polar coordinates are determined [26] using results
known from the factorization method [2]. However, from eqs (44) and (45) we have
lth partial-wave radial Schrödinger equation

(
d2

dr2
+ N − 1

r

d

dr
− l(l + N − 2)

r2
− 2V (r)

)
R(N )

n,l (r) = 2E (N )
n,l R(N )

n,l (r).

(46)

Here we have used h̄ = M = 1 and the superscript (N ) on the radial function R(N )
n,l (r)

and the energy eigenvalue E (N )
n,l merely stand for the dimensionality of the problem, the

subscript n refers to a quantum number, the interpretation of which depends on the choice
of V (r).

In order to apply the NU method, we rewrite eq. (46) using a new variable of the form
s = −√

(2α/d)rd , like

d2

ds2
R(N )

n,l (s) + d + N − 2

sd

d

ds
R(N )

n,l (s)

+ 1

d2s2

(
2βd√

2α
s − d2s2 − l(l + N − 2)

)
R(N )

n,l (s) = 0 (47)

which leads to a hypergeometric-type equation. After comparing eq. (47) with eq. (2), we
obtain the following definitions as

R(N )
n,l (s) = φn(s)yn,l(s), (48a)

τ̃ (s) = d+N−2, σ (s) = sd, σ̃ (s) = 2βd√
2α

s−d2s2−l(l+N−2). (48b)

Substituting these values in eq. (10), we obtain the π function as

π(s) = − N − 2

2
±

√

d2s2 +
(

kd − 2βd√
2α

)
s +

(
l + N − 2

2

)2

. (49)

As before, to find the values of k, the discriminant of eq. (49) under the square root has
to be zero, so that the expression becomes the square of a polynomial of first degree. For
this, we must put

(
kd − 2βd√

2α

)2

− 4d2

(
l + N − 2

2

)2

= 0. (50)

When the required arrangements are done with respect to the constant k, its double roots
are derived as

k± = 2β√
2α

± 2

(
l + N − 2

2

)
. (51)

Substituting the acceptable value of k− into eq. (49), the acceptable value of π(s) is
obtained as

π−(s) = − N − 2

2
−

(
ds −

(
l + N − 2

2

))
. (52)
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Here, we select the polynomial π−(s) for which the function τ(s) in eq. (6) has a negative
derivative. Therefore, the function τ(s) satisfies these requirements, with

τ−(s) = d − 2ds + 2

(
l + N − 2

2

)
, τ ′(s) = −2d. (53)

From eqs (7) and (11), we get

λn = 2nd (54)

and also

λ = 2βd√
2α

− 2

(
l + N − 2

2

)
− d. (55)

From eqs (54) and (55), we get a quantization condition

β

d
√

2α
−

d + 2

(
l + N−2

2

)

2d
= n, n = 0, 1, 2, 3, ... . (56)

Let us now find the corresponding eigenfunctions for this potential. Due to the NU
method, the polynomial solutions of the hypergeometric function yn(s) depend on the
determination of the weight function ρ(s) which satisfies the differential equation (9). As
before, putting the values of τ(s) and σ(s) in eq. (9) and solving it, we obtain the weight
function ρ(s) as

ρ(s) = 1

d
s

2
d (l+ N−2

2 )e−2s . (57)

Substituting the values of σ(s) and ρ(s) into the Rodrigues relation given in eq. (8), the
polynomial solution yn(s) of eq. (4) is obtained in the following form:

yn(s) = Bnls
− 2

d (l+ N−2
2 )e2s dn

dsn

(
sn+ 2

d (l+ N−2
2 )e−2s

)
, (58)

where Bn is the normalization constant. The polynomial solutions of yn(s) in eq. (58) can
also be expressed in terms of the associated Laguerre polynomials as

yn(s) = Bndn+1n!L
2
d

(
l+ N−2

2

)

n (2s). (59)

By substituting π−(s) and σ(s) in eq. (5) and solving it, we obtain φn(s) as

φn(s) = sl/de−s . (60)

Putting the values of yn(s) and φn(s) in eq. (48a), we get radial wave functions as

R(N )
n,l (s) = Ansl/de−s L

2
d

(
l+ N−2

2

)

n (2s), (61)

where An is the normalization constant. Taking as before d = d1/d2 with d1 and d2 two
relatively prime positive integers and L = l + (N − 2/2), condition (54) can be written
in the form β = (1/d2)

√
2α(D + (d1/2)), with D = d1((βd2/d1

√
2α) − 1

2 ) taken to be
the non-negative integer D = nd1 + Ld2. Here, the states |n,L〉 and |n′,L′〉 belong to
the same zero-energy eigenspace provided (n′ − n)d1 = (L − L′)d2. Actually, the states
....|2n −n′, 2L−L′〉, |n,L〉, |n′,L′〉, |2n′ −n, 2L′ −L〉, ....(if admissible) will then all be
degenerate. Restrictions arise from the fact that the quantum number n and L must satisfy
0 ≤ n ≤ D/d1, 0 ≤ L ≤ D/d2. It should be stressed that these accidental degeneracies
are local and appear only for the level E = 0.
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4.1 The Coulomb potential (d = 1)

For d = 1, the Hamiltonian given in eq. (1) becomes H = HC + α with the Schrödinger
equation HC|ψ〉 = E |ψ〉 for a particle moving in a β/r potential in N dimensions
[27,28]. The energy eigenvalue E is −α. The spectrum

E = −α = − β2

2

(
n + l + N−1

2

)2 (62)

and the wave function

R(3)
n,l (r) = Cn,mrle−√

2αr L
2(l+ N−2

2 )
n

(
2
√

2αr
)
, (63)

where Cn,m is the normalization constant.

4.2 The harmonic oscillator potential (d = 2)

For d = 2, the Hamiltonian given in eq. (1) becomes H = Hh.o. −β with the Schrödinger
equation Hh.o.|ψ〉 = E |ψ〉 for a particle moving in an N -dimensional harmonic well.
The energy eigenvalue E = β. The spectrum

E = β = √
2α

(
2n + l + N

2

)
(64)

and the radial wave function [28,29]

R(3)
n,l (r) =

(
2n!

�(n + l + N/2)

)1/2

rle−√
2αr2

L(l+ N−2
2 )

n

(
2
√

2αr2
)

. (65)

5. Conclusion

We have been concerned with the Hamiltonians

H = 1

2m
P2 + αr2d−2 − βrd−2, α, β > 0.

We have calculated the eigenvalues and eigenfunctions by NU method in two and N
dimensions for the above Hamiltonians at E = 0 eigenstate and also obtained the results
of the harmonic oscillator and Coulomb problem. The extension sought by us, although
straightforward, is quite instructive because laws of physics in N spatial dimensions may
often lead to insights concerning laws of physics in lower dimensions [23,24]. For exam-
ple, Goodson et al [27] used the 1/N perturbation theory to calculate highly accurate
energy eigenvalues for the ground and doubly excited states of He. The effect of elec-
tron correlation was included through dimensional scaling of the Scrhödinger equation.
Energy was expanded in the parameter δ = 1/N , N being treated as a continuous variable
conversing to the physical situation δ = 1/3. Thus, adaptation of the method described
in ref. [28] for the N -dimensional Schrödinger equation is of considerable interest. Fur-
ther, we note that a similar study is mathematically complicated [29] even for a method
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based on supersymmetric quantum mechanics [30–33]. We conclude by noting that the
NU method is an elegant and powerful alternative technique. This technique removes the
drawback in the original theory and bypass some difficulties in solving the Schrödinger
equation. It also provides closed forms for the energy eigenvalues as well as the corre-
sponding eigenfunctions. Here, the formalism systematically recovers known results in
a natural way and allows one to extend certain results in particular cases. It is important
to note that the local accidental degeneracies are signalled by the possibility of separat-
ing the variables in the Schrödinger equation in more than one coordinate system. This
statement is also true in any dimensions.
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