
PRAMANA c© Indian Academy of Sciences Vol. 78, No. 5
— journal of May 2012

physics pp. 767–778

Gravitational Jaynes–Cummings model beyond
the rotating wave approximation

M MOHAMMADI
Department of Physics, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran
E-mail: mohammadi@iaush.ac.ir

MS received 17 September 2011; revised 14 November 2011; accepted 8 December 2011

Abstract. In this paper, the quantum properties of a two-level atom and the cavity-field in the
Jaynes–Cummings model with the gravity beyond the rotating wave approximation are investi-
gated. For this purpose, by solving the Schrödinger equation in the interaction picture, the evolving
state of the system is found by which the influence of the counter-rotating terms on the dynam-
ical behaviour of atomic population inversion and the probability distribution of the cavity-field
as quantum properties is explored. The results in the atom–field system beyond the rotating wave
approximation with the gravity show that the quantum properties are not completely suppressed
under certain conditions.
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1. Introduction

A fundamental task in physics is the description of the matter–light interaction using the
Jaynes–Cummings model (JCM) [1]. The JCM is analytically solvable by rotating wave
approximation (RWA) when the counter-rotating terms (CRTs) are neglected [2]. This
approximation is valid when coupling regime is weak and the detuning is small [3,4].
Yet, with the advent of circuit QED it has become feasible experimentally to explore
regimes of the model where the dynamics is not well described within the RWA [5–7].
There have already been many investigations exploring analytically and numerically the
local dynamics of the model beyond the RWA [8,9]. Some of the developed techniques
deal with nearly resonant but strong couplings [10–12] and some deal with highly detuned
and strong coupling scenarios [13–15].

On the other hand, with development of technologies of laser cooling and atom trap-
ping, the interaction between a moving atom and the field has attracted much attention
[16,17]. Experimentally, atomic beams with very low velocities are generated in laser
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cooling and atomic interferometry [18]. It is obvious that for atoms moving with a veloc-
ity of a few millimeters or centimeters per second for a time period of several milliseconds
or more, the influence of Earth’s acceleration becomes important and cannot be neglected
[19].

A semiclassical description of a two-level atom interacting with a classical running
laser wave in a gravitational field is given in [20,21]. However, the semiclassical treatment
does not permit us to study the pure quantum effects occurring in the course of atom–
radiation interaction. Recently, within a quantum treatment of the internal and external
dynamics of the atom, we have presented our research to investigate the influence of
classical homogeneous gravitational field on the atom–field properties in the JCM with
the RWA [22,23].

In this paper, the quantum properties of two-level atom and the cavity-field are inves-
tigated, when the two-level atom interacts with the single-mode travelling wave field in
optical ring cavity (cavity-field) with the gravity and beyond the RWA. By solving the
Schrödinger equation in the interaction picture, the evolving state of the system is found
by which the influence of the CRTs on the dynamical behaviour of atomic population
inversion and the probability distribution of the cavity-field is explored. In §2, we present
a quantum treatment of the internal and external dynamics of the atom. In the interaction
picture, we obtain an effective Hamiltonian describing the interaction of two-level atom
with the single-mode cavity-field with the gravity and with respect to CRTs. In §3, we
investigate the dynamical evolution of the system and show how the CRTs may affect
the dynamical properties of the JCM with the gravity. In §4, we study the influence of
RCTs on atomic population inversion and the probability distribution of the cavity-field
as quantum properties under certain conditions. Finally, we summarize our conclusion
in §5.

2. The effective Hamiltonian for the JCM with the gravity beyond the RWA

The total Hamiltonian for the atom–field system with the gravity and in the absence of
RWA with the atomic motion along the position vector �̂x is given by [24]

Ĥ = Ĥfree + ĤRWA + ĤCRT, (1)

where

Ĥfree = p̂2

2M
− M �g · �̂x + �ω

(
â†â + 1

2

)
+ 1

2
�ωegσ̂z, (2)

ĤRWA = �λ[exp(−i �q · �̂x)â†σ̂− + exp(i �q · �̂x)σ̂+â], (3)

ĤCRT = �λ[exp(i �q · �̂x)â†σ̂+ + exp(−i �q · �̂x)σ̂−â], (4)

where â and â† denote, respectively, the annihilation and creation operators of a single-
mode travelling wave with frequency ω, �q is the wave vector of the running wave and
σ̂± denote the raising and lowering operators of the two-level atom with electronic levels
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|e〉, |g〉 and Bohr transition frequency ωeg. The atom–field coupling is given by the param-

eter λ and �̂p, �̂x denote, respectively, the momentum and position operators of the atomic
centre of mass motion and g is the Earth’s gravitational acceleration. The Schrödinger
equation is given by

i�
∂|ϕ(t)〉

∂t
= Ĥ |ϕ(t)〉. (5)

It is convenient to consider the evolution of the state vector |ϕ(t)〉 of the total system in
an interaction picture induced by the unitary operator

T̂ (t) = exp

(
−i t Ĥ0

�

)
exp

(
−i

∫
Ĥp(t ′)dt ′

�

)
, (6)

where

Ĥ0 = p̂2

2M
+ M �g · �x − �

[
q2

�

8M
− (â†â + |e〉〈e|)ω

]
− �σ̂z δ̂, (7)

δ̂ =
[

2ω − 3

2
ωeg − �q ·

(
�̂x + �̂p

M

)]
, (8)

with

Ĥp(t) = ( �̂p + �q) · �gt + 1

2
Mg2t2. (9)

In this picture, the evolution of the transformed state vector |ϕ1e(t)〉 = T̂ (t)|ϕ(t)〉 is
governed by the Hamiltonian

Ĥ1e = T̂ † Ĥ T̂ − i�T̂ † ˙̂T
= �λ(exp[−i t�̂−( �̂p, �g, t)]â†σ̂− + exp[i t�̂−( �̂p, �g, t)]σ+â)

+ �λ(exp[i t�̂+( �̂p, �g, t)]â†σ̂+ + exp[−i t�̂+( �̂p, �g, t)]σ−â), (10)

where

�̂±( �̂p, �g, t) = ω ± ωeg −
(

�q · �̂p
M

+ �q · �gt + 3
�q2

2M

)
, (11)

has been introduced as the Doppler shift detuning at time t . The Schrödinger equation
governing the JCM beyond the RWA is

i�
∂|ϕ1e(t)〉

∂t
= Ĥ1e|ϕ1e(t)〉. (12)

It is not easy to solve eq. (12) because of the presence of the CRTs in (10). Thus, the
unitary squeezing operator is defined as

Ŝ(η) = exp

(
η∗

2
â2 − η

2
â†2

)
. (13)
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The Hamiltonian corresponding to the state vector |φ2e(t)〉 = Ŝ†(η)|ϕ1e(t)〉 is obtained as

Ĥ2e = Ŝ† Ĥ1e Ŝ − i�Ŝ† ˙̂S
= �λ[A(t)â2 + A∗(t)â†2 + ζ̂ (t)â†σ̂−

+ ζ̂ ∗(t)σ̂+â + ξ̂ ∗(t)â†σ̂+ + ξ̂ (t)σ̂−â + C(t)], (14)

where

A(t) = η∗ sinh
√

4η∗η√
4η∗η

[
i(η̇η∗ − η̇∗η)

4η∗η
− ω

]
− i(η̇η∗ − η̇∗η)

4η∗η
− i η̇∗

2
, (15)

ζ̂ (t) = γ̂−(t) cosh
√

η∗η − γ̂+(t)
sinh

√
η∗η√

η∗η
, (16)

ξ̂ (t) = γ̂+(t) cosh
√

η∗η − γ̂−(t)η∗ sinh
√

η∗η√
η∗η

, (17)

C(t) =
[
ω

2
− i(η̇η∗ − η̇∗η)

8η∗η

]
(cosh

√
4η∗η − 1), (18)

with

γ̂±(t) = exp[−i t�̂±( �̂p, �g, t)]. (19)

By considering the two constraints A = 0 and ξ = 0, the time-dependent function η(t) is
obtained as

η(t)= 1

2
exp(iχ(t)) ln

[
2ωeg exp(iχ(t)/2) + iω f1(t) exp(−iχ(t)/2)

2ωeg exp(iχ(t)/2) − iω f1(t) exp(−iχ(t)/2)

]
,

(20)

with

χ(t) = −i ln[ω f (t)], (21)

where

f (t) = ω f1(t) − i

2ω
ln f2(t), (22)

f2(t) = iω f1(t)

2ωeg
[2 + i f ∗

1 (t) + 2
√

1 + i f ∗
1 (t)], (23)

f1(t) = −2iωeg

ω
exp(−2iωegt). (24)

By using (20), the Hamiltonian (14) is rewritten as

Ĥ2e = �λ[ζ̂ (t)â†σ̂− + ζ̂ ∗(t)σ̂+â + C(t)]. (25)
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The Schrödinger equation with regard to (25) is

i�
∂|ϕ2e(t)〉

∂t
= Ĥ2e|ϕ2e(t)〉. (26)

Finally, by using Te = exp(−i
∫ t

0 C(t ′)dt ′), the effective Hamiltonian is given by

Ĥeff = T †
e Ĥ2eTe − i�T †

e Ṫe = Ĥ2e − C(t)

= �λ[ζ̂ (t)â†σ̂− + ζ̂ ∗(t)σ̂+â], (27)

where we have defined ζ̂ (t) and C(t) in (16) and (18), respectively.

3. Dynamical evolution beyond the RWA

In §2, we obtained an effective Hamiltonian for the atom–field system with the gravity
and in the absence of RWA. In this section, the dynamical evolution of the system is
investigated. We shall show how the CRTs may affect the quantum dynamics of the JCM
with the gravity. For this purpose, we solve the Schrödinger equation

i�
∂|ψ(t)〉

∂t
= Ĥeff|ψ(t)〉, (28)

for the state vector |ψ(t)〉 = Te(t)|ϕ2e(t)〉 with the effective Hamiltonian (27). Since the
Hamiltonian couples only the states |g, n + 1〉 ⊗ | �p〉 and |e, n〉 ⊗ | �p〉, the state vector is
introduced by the following form:

|ψ(t)〉 =
∫

d3 p
∑
n=0

(ψe,n( �p, �g, t)|e, n〉 ⊗ | �p〉

+ψg,n+1( �p, �g, t)|g, n + 1〉 ⊗ | �p〉). (29)

The equations of motion for the time-dependent probability amplitudes ψe,n( �p, �g, t) ≡
ψ1, ψg,n+1( �p, �g, t) ≡ ψ2 by substituting (27) and (29) into (28) are found as

ψ̇1 = −iλ
√

(n + 1)ζ ∗(t)ψ2, (30)

and

ψ̇2 = −iλ
√

(n + 1)ζ(t)ψ1. (31)

At time t = 0 the atom is uncorrelated with the single-mode cavity-field and the state
vector of the system can be written as a direct product

|ψ(t = 0)〉 = |ψc.m.(0)〉 ⊗ |ψatom(0)〉 ⊗ |ψfield(0)〉
=

(∫
d3 pφ( �p)| �p〉

)
⊗ (ce|e〉 + cg|g〉)

⊗
(∑

n=0

wn|n〉
)

, (32)

where we have assumed that initially the field is in a single-mode coherent superposition
of Fock states, the atom is in a coherent superposition of its excited and ground states, and
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the state vector for the centre-of-mass degree of freedom is |ψc.m.(0)〉 = ∫
d3 pφ( �p)| �p〉.

The initial state (32) reads as

|ψ(t =0)〉=
∫

d3 p
∑
n=0

(wnceφ( �p)|e, n〉 ⊗ | �p〉

+wn+1cgφ( �p)|g, n + 1〉 ⊗ | �p〉). (33)

When we compare eq. (33) with eq. (29) we find the following initial conditions:

ψ1(t = 0) = wnceφ( �p), ψ2(t = 0) = wn+1cgφ( �p). (34)

We can solve two coupled first-order differential eqs (30) and (31) in a straightforward
way. We have

∂2ψ1

∂t2
− a∗(t)

∂ψ1

∂t
+ bn(t)ψ1 = 0, (35)

and

∂2ψ2

∂t2
− a(t)

∂ψ2

∂t
+ bn(t)ψ2 = 0, (36)

where

a(t) = ζ̇ (t)

ζ(t)
, bn(t) = λ2(n + 1)ζ ∗(t)ζ(t), (37)

are time-dependent. The exact solutions of eqs (35) and (36) read as, respectively,

ψ1(t) = exp

(
tbn(t)

a(t)

)
[Cn(1)D1n(t) + Cn(2)E1n(t)], (38)

and

ψ2(t) = exp

(
tbn(t)

a(t)

)
[Cn(1)D2n(t) + Cn(2)E2n(t)], (39)

where

D1n(t) = H

[
b2

n(t)

a∗3(t)
,
−√

2bn(t)

a∗3/2(t)
+ t

√
a∗(t)√

2

]
, (40)

E1n(t) = 1F1

⎡
⎣ −b2

n(t)

2a∗3(t)
, 1/2;

(
−√

2bn(t)

a∗3/2(t)
+ t

√
a∗(t)√

2

)2
⎤
⎦ , (41)

D2n(t) = H

[
b2

n(t)

a3(t)
,
−√

2bn(t)

a3/2(t)
+ t

√
a(t)√
2

]
, (42)
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E2n(t) = 1F1

⎡
⎣−b2

n(t)

2a3(t)
, 1/2;

(
−√

2bn(t)

a3/2(t)
+ t

√
a(t)√
2

)2
⎤
⎦ , (43)

with

Cn(1) = E2n(0)ψ1(0) − E1n(0)ψ2(0)

E2n(0)D1n(0) − E1n(0)D2n(0)
, (44)

Cn(2) = D2n(0)ψ1(0) − D1n(0)ψ2(0)

E1n(0)D2n(0) − E2n(0)D1n(0)
, (45)

and H , 1 F1 denote, respectively the Hermite and the confluent hypergeometric functions.

4. Dynamical properties of the model beyond the RWA

In this section, influence of the CRTs on the quantum properties of the two-level atom and
the quantized radiation field with the gravity is studied.

4.1 Atomic inversion

The atomic population inversion is expressed as

W (t) = 〈ψ(t)|σz|ψ(t)〉. (46)

By using the atom–field state |ψ(t)〉 given by eq. (29), we obtain

W (t) =
∫

d3 p
∑
n=0

[|ψ1|2 − |ψ2|2]. (47)

Therefore, by substituting (38) and (39) into (47) we have

W (t) =
∫

d3 p
∞∑

n=0

exp

(
t
a∗(t)bn(t) + a(t)b∗

n(t)

|a(t)|2
)

×{|Cn(1)|2(|D1n(t)|2 − |D2n(t)|2)
+ |Cn(2)|2(|E1n(t)|2 − |E2n(t)|2)
+ Cn(1)C∗

n (2)(D1n(t)E∗
1n(t) − D2n(t)E∗

2n(t))

+ Cn(2)C∗
n (1)(E1n(t)D∗

1n(t) − E2n(t)D∗
2n(t))}, (48)

where according to eqs (16) and (19), ζ(t) and γ±(t) in a(t) and bn(t) are functions of
�p. We have shown in [23] that because of strong gravity �q · �g = 1.5 × 107 s−2 in atom–
field system with the RWA, the quantum properties such as atomic population inversion
W (t) and the probability distribution of cavity field P(n, t) are suppressed. Furthermore,
investigations of quantum properties such as W (t) and P(n, t) for various physical sys-
tems are extremely important due to experimental realizations [25,26]. Therefore, we
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are interested in establishing conditions in which not only both the gravity and the CRTs
are considered but also the quantum properties of the system are not suppressed. For
this purpose, we consider an atom–field system beyond the RWA with the weak gravity
�q · �g = 0.01 × 107 s−2, because based on [23], the quantum properties of the system
are not completely suppressed when considering the weak gravity with proper value for
atom–field detuning � = ω − ωeg. Then, by considering different values for coupling
parameter λ, the other condition for our purpose is found. Influence of CRTs on the evo-
lution of atomic population inversion for three values of coupling parameter λ with the
weak gravity �q · �g = 0.01 × 107s−2 and the atom–field detuning � = 0.18 × 107 rad s−1

[23] is shown in figure 1. We assume that at t = 0, the two-level atom is in a coherent
superposition of the excited state and the ground state with cg(0) = 1/

√
2, ce(0) = 1/

√
2

and the cavity-field is prepared in a Glauber coherent state wn(0) = exp(−|α|2
2 )αn/

√
n!.

In figures 1 and 2 we set q = 107 m−1, M = 10−26 kg, g = 9.8 m s−2, ωrec = �q2/2M =
0.5 × 106 rad s−1 [20–24], ωeg = 8.82 × 107 rad s−1, ω = 9 × 107 rad s−1, α = 2 and
φ( �p) = 1√

2πσ0
exp(−p2/σ 2

0 ) with σ0 = 1 [23,27]. Here, it is necessary to point out that

the relevant time-scale introduced by the gravitational influence is τa = 1/
√�q · �g [22].

Therefore, for an optical field with |�q| = 107 m−1, τa is about 10−4 s. In figure 1a, one can
see the Rabi-like oscillations in the atomic population inversion W (t) in weak coupling
regime with λ = 0.01ω [28,29] which is agreeable with [30]. In the atom–field system
beyond the RWA, not only the weak gravity is considered but also the atom–field detuning
� = 0.18 × 107 rad s−1 [23] is selected. By comparing figures 1b and 1c for strong
coupling λ = 1.11ω [31] and ultra-strong coupling λ = 11.1ω [32] respectively, the
Rabi-like oscillations in the atomic population inversion W (t) is completely suppressed
which is agreeable with [33,34]. Moreover, with increasing value of coupling parameter
λ, the amplitude of W (t) increases.

4.2 The probability distribution of the cavity-field

The probability distribution function P(n, t) that there are n photons in the cavity-field at
time t is given by

P(n, t) = |〈n|ψ(t)〉|2. (49)

By using the expressions (27), (36) and (37) we have

P(n, t) =
∫

d3 p[|ψ1(t)|2 + |ψ2(t)|2]. (50)

Therefore, we obtain

P(n, t) =
∫

d3 p exp

(
t
a∗(t)bn(t) + a(t)b∗

n(t)

|a(t)|2
)

× {|Cn(1)|2(|D1n(t)|2 + |D2n(t)|2)
+ |Cn(2)|2(|E1n(t)|2 + |E2n(t)|2)
+ Cn(1)C∗

n (2)(D1n(t)E∗
1n(t) + D2n(t)E∗

2n(t))

+ Cn(2)C∗
n (1)(E1n(t)D∗

1n(t) + E2n(t)D∗
2n(t))}. (51)

774 Pramana – J. Phys., Vol. 78, No. 5, May 2012



Gravitational Jaynes–Cummings model

(a)

(b)

(c)

Figure 1. Time evolution of the atomic population inversion vs. the scaled time λt .
Here we have set q =107 m−1, M =10−26 kg, g =9.8 m s−2, ωrec =0.5×106 rad s−1,
ωeg = 8.82 × 107 rad s−1, ω = 9 × 107 rad s−1, α = 2, �q · �g = 0.01 × 107 s−2,
�=0.18 × 107 rad s−1 and ce =cg =1/

√
2 with coherent state for initial cavity-field:

(a) For λ=0.01ω, (b) for λ=1.11ω and (c) for λ=10.1ω.

The three-peak structure of probability distribution of the cavity-field P(n, t) in [23] has
decreased with increase in gravity, when the RWA is considered. Influence of CRTs on
the three-dimensional plot of the P(n, t) with the weak gravity �q · �g = 0.01×107 s−2 and
the atom–field detuning � = 0.18 × 107 rad s−1 [23] is shown in figure 2. By comparing
figures 2a–2c for weak coupling λ = 0.01ω [28,29], strong coupling λ = 1.11ω [31] and
ultra-strong coupling λ = 11.1ω [32] respectively, one can see that the number of peaks
in the P(n, t) increase because of CRTs (compare with [23]). Moreover, the multipeak
structure of P(n, t) is an evidence for the nonclassical behaviour of the cavity-field which
means, the nonclassical behaviour of cavity-field is suppressed with respect to CRTs by
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(a)

(b)

(c)

Figure 2. The three-dimensional plot of the probability distribution function P(n, t)
vs. the scaled time λt and n with the same corresponding data used in figure 1: (a)
For λ = 0.01ω, (b) for λ = 1.11ω and (c) for λ = 10.1ω.

increasing the coupling parameter. By comparing figures 1 and 2, it is found that the
nonclassical behaviour of quantum properties for the atom and the field in our system
without the RWA is not suppressed by considering three conditions: (I) the weak gravity
�q · �g = 0.01×107 s−2, (II) the weak coupling λ = 0.01ω and (III) the atom–field detuning
� = 0.18 × 107 rad s−1.
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5. Summary and conclusions

In this paper, the quantum properties of a two-level atom and the cavity-field in the
JCM with the gravity beyond the RWA are investigated. For this purpose, by solving
the Schrödinger equation in the interaction picture, the evolving state of the system is
found by which the influence of the CRTs on the dynamical behaviour of atomic pop-
ulation inversion of two-level atom and the probability distribution of the cavity-field is
explored. The results are summarized as follows: with increase in coupling parameter
in our system without the RWA (1) the Rabi-like oscillations in the atomic population
inversion are disappeared, (2) the nonclassical behaviour of cavity-field is suppressed and
(3) the nonclassical properties of the atom–field system beyond the RWA with the gravity
are not completely suppressed by considering three conditions: (I) the weak gravity, (II)
the weak coupling and (III) the proper detuning.

Acknowledgements

The author wishes to thank the Office of Research of Shahreza Branch, the Islamic Azad
University, for their support.

References

[1] E T Jaynes and F Cummings, Proc. IEEE 51, 89 (1963)
[2] L Allen and J H Eberly, Optical resonance and two-level atoms (Dover Publications, USA,

1987)
[3] M O Scully and M S Zubairy, Quantum optics (Cambridge University Press, 1997)
[4] W P Schleich, Quantum optics in phase space (Wiley-VCH Verlag, Berlin, 2001)
[5] T Niemczyk, F Deppe, H Huebl, E P Menzel, F Hocke, M J Schwarz, J J García-Ripoll,

D Zueco, T Hummer, E Solano, A Marx and R Gross, Nat. Phys. 6, 772 (2010)
[6] A Fedorov, A K Feofanov, P Macha, P Forn-Díaz, C J P M Harmans and J E Mooij, Phys.

Rev. Lett. 105, 060503 (2010)
[7] P Forn-Díaz, J Lisenfeld, D Marcos, J J García-Ripoll, E Solano, C J P M Harmans and J E

Mooij, Phys. Rev. Lett. 105, 237001 (2010)
[8] B W Shore, The theory of coherent atomic excitation, in: Simple atoms and fields (Wiley-

Interscience Publication, 1990) Vol. I
[9] S Swain, J. Phys. A: Math. Nucl. Gen. 6, 192 (1973)

M D Crisp, Phys. Rev. A46, 4138 (1992)
A B Klimov, I Sainz and S M Chumakov, Phys. Rev. A68, 063811 (2003)
J Larson, Phys. Scr. 76, 146 (2007)

[10] K Zaheer and M S Zubairy, Phys. Rev. A37, 1628 (1988)
[11] G A Finney and J Gea-Banacloche, Phys. Rev. A50, 2040 (1994)
[12] E K Irish, Phys. Rev. Lett. 99, 173601 (2007)
[13] E K Irish, J Gea-Banacloche, I Martin and K C Schwab, Phys. Rev. B72, 195410 (2005)
[14] J Casanova, G Romero, I Lizuain, J J García-Ripoll and E Solano, Phys. Rev. Lett. 105,

263603 (2010)
[15] J Hausinger and M Grifoni, Phys. Rev. A82, 062320 (2010)
[16] R R Schicher, Opt. Commun. 70, 97 (1989)
[17] A Joshi and S V Lawande, Phys. Rev. A42,1752 (1990)
[18] A Joshi and S V Lawande, Int. J. Mod. Phys. B6, 3539 (1992)

Pramana – J. Phys., Vol. 78, No. 5, May 2012 777



M Mohammadi

[19] V Bartzisl, Physica A180, 428 (1992)
[20] C Lammerzahl and C J Borde, Phys. Lett. A203, 59 (1995)
[21] K P Marzlin and J Audertsch, Phys. Rev. A53, 1004 (1995)
[22] M Mohammadi, M H Naderi and M Soltanolkotabi, J. Phys. A: Math. Gen. 39, 11065 (2006)
[23] M Mohammadi, M H Naderi and M Soltanolkotabi, J. Phys. A: Math. Theor. 40, 1377 (2007)
[24] T Sleator and M Wilkens, Phys. Rev. A48, 3286 (1993)
[25] D Mecshede, H Walther and G Muller, Phys. Rev. Lett. 54, 551 (1985)
[26] K An, J J Childs, R R Dasari and M S Feld, Phys. Rev. Lett. 73, 3375 (1994)
[27] M Mohammadi, J. Phys. B: At. Mol. Phys. 42, 145507 (2009)
[28] A Wallraff, D I Schuster, A Blais, L Frunzio, R-S Huang, J Majer, S Kumar, S M Girvin and

R J Schoelkopf, Nature 431, 162 (2004)
[29] C Uchiyama, M Aihara, M Saeki and S Miyashita, Phys. Rev. E80, 021128 (2009)
[30] I D Feranchuk, L I Komarov and A P Ulyanenkov, J. Phys. A29, 4035 (1996)
[31] C Ciuti and I Carusotto, Phys. Rev. A74, 033811 (2006)
[32] D I Schuster, A A Houck, J A Schreier, A Wallraff, J M Gambetta, A Blais, L Frunzio, J

Majer, B Johnson, M H Devoret, S M Girvin and R J Schoelkopf, Nature 445, 515 (2007)
[33] J Seke, Physica A213, 587 (1995)
[34] J Seke, Quant. Opt. 3, 127 (1991)

778 Pramana – J. Phys., Vol. 78, No. 5, May 2012


	Gravitational Jaynes–Cummings model beyond the rotating wave approximation
	Abstract
	Introduction
	The effective Hamiltonian for the JCM with the gravity beyond the RWA
	Dynamical evolution beyond the RWA
	Dynamical properties of the model beyond the RWA
	Atomic inversion
	The probability distribution of the cavity-field

	Summary and conclusions
	References



