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Abstract. Experimental investigation of the thermal conductivity of large grain and its depen-
dence on the trapped vortices in parallel magnetic field with respect to the temperature gradient ∇T
was carried out on four large-grain niobium samples from four different ingots. The zero-field ther-
mal conductivity measurements are in good agreement with the measurements based on the theory
of Bardeen–Rickayzen–Tewordt (BRT). The change in thermal conductivity with trapped vortices is
analysed with the field dependence of the conductivity results of Vinen et al for low inductions and
low-temperature situation. Finally, the dependence of thermal conductivity on the applied magnetic
field in the vicinity of the upper critical field Hc2 is fitted with the theory of pure type-II supercon-
ductor of Houghton and Maki. Initial remnant magnetization in the sample shows a departure from
the Houghton–Maki curve whereas the sample with zero trapped flux qualitatively agrees with the
theory. A qualitative discussion is presented explaining the reason for such deviation from the the-
ory. It has also been observed that if the sample with the trapped vortices is cycled through Tc, the
subsequent measurement of the thermal conductivity coincides with the zero trapped flux results.
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1. Introduction

Niobium is the material of choice for superconducting radiofrequency (SRF) cavity pro-
grams in different particle accelerator laboratories because of its mechanical properties
are favourable for formability, machining and also because of its high Tc and high first
flux penetration field Hc1. SRF cavity performances have been continually improved for
the past three decades to achieve a reproducible quality factor of 1010 and accelerating
fields (Eacc) of 30–35 MV/m. The present approach for the fabrication of supercon-
ducting radiofrequency (SRF) cavities is to roll and deep draw sheets of polycrystalline
high-purity niobium. Jefferson Laboratory pioneered the use of large-grain/single-crystal
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Nb directly sliced from an ingot for the fabrication of single-crystal high-purity Nb
SRF cavities [1]. The large-grain/single-crystal niobium has several potential advan-
tages over the polycrystalline niobium as discussed in ref. [2] and has become a viable
alternative to the standard fine grain (ASTM grain size > 6), high purity (RRR ≥ 250)
niobium for the fabrication of high-performance SRF cavities for particle accelerators.
A cavity made of large-grain or single-crystal niobium operating below 2 K may have
a better thermal stability due to the reduction of phonon scattering by grain bound-
aries (causing the so-called ‘phonon peak’). Many measurements have shown that the
scattering of phonons and electrons with the fluxoids decreases the observed thermal con-
ductivity [3,4]. For instance, at low temperature (T � Tc), for niobium between the
temperature 3–1.8 K, Kph montonically increases due to the decrease of scattering of
phonons with the electrons because of the electron decoupling resulting from the con-
densation into Cooper pairs. The thermal conductivity in the mixed state, have been
measured in previous studies [3–7]. They showed that with the increasing magnetic
field in the mixed state, more and more fluxoids enter the superconductor and as a
result both electron and phonon mean-free paths (mfp) decrease. This article presents
results on the thermal conductivity measurement of large-grain niobium in the Meissner
state and in the mixed state in the temperature range 1.8–5 K and for magnetic fields
up to the surface critical field, Hc3. Also the effect of initial trapped vortices on the
Meissner and mixed state conductivity of type-II superconductor is studied here. The
results show that when the sample is cycled through Tc, with no external field applied,
the sample re-gain the Meissner state and the thermal conductivity has the same value as
with no trapped flux. The zero-field thermal conductivity data have been fitted with the
semiempirical parametrization of Koechlin and Bonin [8]. The results for the specimen
with the trapped vortices are interpreted with phonon-vortex scattering, using the qualita-
tive model of Vinen et al [4]. The thermal conductivity as a function of B in the mixed
state is analysed using the Houghton–Maki theory [9].

2. Experimental set-up

2.1 System design

A system to measure the magnetization curve and the thermal conductivity of the cylin-
drical sample rod of 6 mm diameter and 120 mm length was designed and built. Figure 1
shows a schematic of the system and the picture of the sample rod. A heater made with
constantan wire glued on a Cu block with epoxy is clamped near the base of the sample.
Two calibrated Cernox resistors are soldered with indium on two small Cu blocks which
are clamped to the rod at a distance of about 40 mm. A pickup coil (< 200 turns, 0.29 mm
diameter Cu wire) is inserted in the middle of the sample, between the two Cernox resis-
tors. The sample is clamped on a Cu block which is inserted in a copper tube and sealed
with indium wire. A stainless steel 23/4 Conflat flange was brazed on the other end of the
tube. The tube is bolted to a ‘T’ section where a flange with feed-through connectors is
bolted on the side. The assembly is bolted to the vacuum line on a vertical test stand (the
pressure in the Cu tube is <10–5 mbar at 4.3 K). Some heat shields are inserted in the
vacuum line to minimize radiation losses. A superconducting magnet up to 1 T (0.1%
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Figure 1. Schematic of the system for measuring the superconducting properties of
the sample and a picture of the sample rod.

field homogeneity over the sample length) made by cryomagnetics surrounds the Cu tube
carrying the sample.

2.2 Measurement methods

The thermal conductivity as a function of the average temperature of the sample is cal-
culated using Fourier’s law where the power supplied to the heater, P , the temperature
difference, �T , the distance d between the two Cernox, and the cross-sectional area of
the sample A are measured:

K = P

�T

d

A
. (1)

The heater power and the sample temperature are controlled with a LakeShore 332
Temperature Controller.

The magnetization of the sample as a function of the applied field is obtained by lin-
early ramping the current in the superconducting magnet (the field-to-current ratio is
12.9 mT/A) at a rate of about 0.1 A/s while measuring the voltage from the pick-up coil
with a Keithley 2182 nanovoltmeter. The magnetization is calculated using the following
formula [10]:

M(Ba) = −1

1 − ND

∫ Ba

0

V(B ′
a) − Vn

Vs − Vn
dB ′

a, (2)

where Vn and Vs are the voltages in the normal and superconducting state respectively and
ND is the demagnetization factor, estimated to be about 0.007 for our samples. A Power
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Figure 2. Critical magnetic field as a function of temperature measured on an indium
rod of 99.99% purity. The solid line is a least-square fit with eq. (3).

Ten power supply (0–10 V, 0–100 A) controlled by an American Magnetics 412 Program-
mer, remotely controlled by a PC, provides current to the superconducting solenoid. For
calibration purposes, we also measured the critical field Bc as a function of temperature
for an indium rod (99.99% purity) made by melting indium in a stainless steel mold. The
data, showed in figure 2, are fitted with the classical formula

Bc(T ) = Bc(0)

(
1 − T 2

T 2
c

)
(3)

and resulted in Tc = 3.35 ± 0.03 K and Bc(0) = 27 ± 2 mT, are in good agreement with
the published data [11].

3. Zero-field temperature dependence of the thermal conductivity

The thermal conductivity K is the sum of contributions from electrons and phonons, K =
Kes + Klatt.. The electron heat conduction in the superconducting state is reduced because
the electrons which have condensed into Cooper pairs do not contribute to any disorder or
entropy transport any more. The remaining fraction of electrons which contribute to heat
transport decreases exponentially with decreasing temperature. According to BRT theory
[8,12],

Kes

Ken
= R(y) , R(y) ≤ 1, (4)

where

R(y) = ( f (0))−1 [ f (−y) + y ln(1 + exp(−y)) + y2/ (2 (1 + exp(y)))]
and

y = �(T )

KBT
=

(
�(T )

KBTc

)(
Tc

T

)
.

The approximation y ∼= αTc/T is valid if T/Tc ≤ 0.6. Finally f (−y) is defined as

f (−y) =
∫ ∞

0

z d z

1 + exp(z + y)
, with f (0) = π2/12.
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Figure 3. The ratio of Kes/Ken = R (y) as a function of reduced temperature,
T/Tc = α/y (within the experimental temperature range).

Here, Tc is the critical temperature of the superconductor, �(T ) is the superconductor
energy gap and α ≈ 1.76 in the BCS theory, but may take values in the range 1.75 ≤
α ≤ 1.95 because of strong coupling effects. The ratio Kes/Ken = R(y) is plotted as a
function of T/Tc taking α ≈ 1.76 in figure 3 within the experimental temperature range
1.8–5 K used in our experiments.

The lattice thermal conductivity is limited by the different scattering mechanisms of
phonons with point defects, dislocations (line defects), grain boundaries, sample walls
and electrons. The general expression for lattice conductivity is Klatt. = 1

3 Cv · v2 · τ

where 1/τ is the total scattering rate of phonons from different scattering mechanisms,
Cv is the specific heat per unit volume and v is the average velocity of the carriers of
thermal energy. The resultant lattice thermal conductivity, taking into account the phonon
scattering by the electrons and by the crystal boundaries, is given by

Klatt.,s
∼=

[
1

exp(y)DT 2
+ 1

BlphT 3

]−1

, (5)

where D and B are two constants and lph is the phonon mean-free path and for our large-
grain niobium sample it is the smallest sample dimension as the grain size of the sample
is bigger than the diameter of the sample rod. The total heat conductivity of the super-
conducting metal is obtained by adding the electron term Kes(T ) and the lattice term
Klatt.,s(T ). This of course is valid for temperatures T lower than the critical temperature,
because y = �(T )/KBT is defined only in this domain,

Ks(T ) ∼= R(y)
[ ρ295 K

L · RRR · T
+ A · T 2

]−1 +
[

1

exp(y)DT 2
+ 1

BlT 3

]−1

, (6)

where L is the Lorentz constant, A is the coefficient of momentum exchange with lattice
vibrations, D is the coefficient of momentum exchange with the normal electrons and B is
a constant which depends on the material and mechanism of scattering. In order to obtain
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Ks(T ) using this model, it is necessary to give experimental values to three variables:
temperature T , residual resistivity ratio RRR and the phonon mean-free path lph. On the
other hand, the theoretical parameters A, L , α, B and D are obtained by fitting these
five parameters to the experimental results. The RRR value is generally determined by
the well-known relationship established by Padamsee et al [13], RRR = 4Ks,4.2 K. But
to determine the RRR value in our studies we have measured the thermal conductivity
at 4.2 K in normal (Ken) and superconducting states (Kes) and then used the following
procedure to have the correct value of the measured RRR. The standard formula of RRR
is replaced by RRR = δKs,4.2 K, where δ is defined by δ = ρ295 K/R(y)LT . To calculate
the RRR value we take ρ295 K = 1.44 × 10−7 �-m, L = 2.45 × 10−8 W K−2, T = 4.2 K
and R(y) is experimentally determined using eq. (4). It is found that δ = 4.7 for BCP
cleaned samples whereas for the heat treated samples it varied from 4.2 to 4.5.

Figures 4 and 5 show experimental thermal conductivity measurement data for four
different samples named A0, B0, C0 and D0 in figure 4 and A1, B1, C1 and D1
in figure 5. The corresponding RRR values are shown in the insets of figures 4
and 5. The samples A0, B0, C0 and D0 are degreased ultrasonically after the EDM
wire cut and then about 180 μm are etched away from all the samples surfaces by
buffered chemical polishing (BCP – 1 : 1 : 1, HF+HNO3+H3PO4). After the first
set of measurements, all the samples are degassed in a vacuum furnace at 600◦C for
10 h in a vacuum better than 10−6 Torr. Then a light BCP (1(HF) : 1(HNO3) :
2(H3PO4)) is carried out on all the heat treated samples to remove about 20 μm.
This set of samples is named A1, B1, C1 and D1 respectively. The experimental
curves are fitted with the above model taking L = 2.45 × 10−8 W K−2 and the
theoretical parameters A, α, B and D obtained from the fitting curves are listed in
table 1.

Figure 4. Experimental thermal conductivity data for 180 μm buffered chemical
polished niobium samples from four different ingots. Solid lines are the fitting curves.
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Figure 5. Experimental thermal conductivity data for 600◦C heat treated niobium
samples from four different ingots. Solid lines are the fitting curves.

The resultant error in K calculation is 〈(�K/K )2〉1/2 ∼= 6%. The experimental fit
parameters are in good agreement with theoretical parameters reported in ref. [8]. Table 1
shows that the BCS gap parameter α does not change in all four samples before and after
the 600◦C degassing. The 600◦C, 10 h degassing is given to remove interstitial hydrogen
and for mechanical stress relaxation. Thus 600◦C degassing has no effect on the BCS
electron–phonon coupling constant, λ ∼ N(εF) · V , where N(εF) is the density of states
for normal electrons at Fermi energy and V is the matrix element of scattering interaction.
It suggests that another scattering mechanism such as electron defect is responsible for
the change in thermal conductivity after 600◦C heat treatment. The parameter B ∝ 1/a0

increases after the degassing, where a0 is the lattice constant. The increase in B implies
that the lattice constant a0 decreases and hence the interstitial hydrogen concentration
decreases which plays a role in the lattice parameter expansion when it is trapped at the
tetrahedral positions of the BCC niobium lattice.

Table 1. Theoretical fitting parameters of the thermal conductivity data.

Parameters

Samples α A 1/D B

A0 1.87 5.03E−05 482 1.02E+03
B0 1.78 3.05E−05 523 3.78E+02
C0 1.81 4.07E−05 348 2.02E+03
D0 1.86 2.97E−05 423 1.24E+03
A1 1.86 1.00E−05 402 3.01E+03
B1 1.77 7.00E−07 299 1.06E+03
C1 1.80 1.00E−06 237 6.32E+03
D1 1.86 1.64E−05 289 2.33E+03
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Figure 6. Thermal conductivity data in normal and superconducting states for the
sample C1. Solid lines are the fitting curves with eq. (6).

The temperature dependence of thermal conductivity for sample C1 in the supercon-
ducting state Ks and the normal conducting state Kn is plotted in figure 6. The solid line
which fits the normal state data points is obtained from the first term on the right-hand
side of eq. (6) excluding the R(y) term. The parameter A is the best fit value as shown
in table 1 for the sample C1 and L = 2.45 × 10−8 W K−2, ρ295 K = 1.45 × 10−7 and
RRR = 138 are used as material constants for the fit in superconducting state. So the
fit parameters are in good agreement for both the normal state and superconducting
state data. As a result, this model can be used to calculate the electronic and phonon
conductivities in normal and superconducting states.

4. Field dependence of thermal conductivity

The core of the trapped flux line is represented by a region of radius ξ , the GL coherence
length, within which the modulus of the order parameter, �(r), is appreciably reduced.
Within this core, the magnetic field and the superfluid velocity are large enough to cause
depairing, so that we expect to find bound excitations that are localized within the core.
From the studies of Caroli et al [14], for clean materials with large GL parameter k, it is
confirmed that except for an energy gap ∼ �∞/EF, where �∞ is the BCS energy gap in
the Meissner state and EF is the Fermi energy, the density of states is similar to that in a
normal metal cylinder of radius ξ . The effect of magnetic field in the materials of smaller
kGL (λL/ξ ) has been studied by Hansen [15] and by Bergk and Tewordt [16]. They found
that the small gap may disappear, but the density of states remains of the same order of
magnitude.

The properties of these excitations (for small and large kGL) are quite different from
those of normal electrons: coherence factors are generally different, and group velocities
along the flux lines are expected to be much smaller than those of the normal electrons.
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The low group velocity means that the contribution of the bound excitations to the thermal
conductivity (measured parallel to the flux lines) should be very small. In addition to these
bound excitations there will be unbound excitations. The unbound excitations behave as
BCS quasiparticles at distances larger than the penetration depth from the vortex core.
Near the flux lines they will be modified as they interact with the magnetic field, the
superfluid velocity and the modulation of �(r). This interaction will cause scattering
among quasiparticles which in turn will reduce the electronic thermal conductivity in the
mixed state due to the trapped flux lines in the material at favourable locations. In the
Meissner state, phonons interact with the electronic excitations, and this interaction plays
an important role in thermal conduction in the Meissner state of a superconductor at fairly
low temperatures. When the magnetic flux is trapped within the material, phonons will
again interact with the bound excitations in the core. The strength of this interaction can
be calculated from Caroli et al [14] taking into account much higher frequencies for the
thermally excited phonons.

Before presenting the experimental results, a theoretical review of the field dependence
of the phonon and electron conductivities is discussed below.

(i) At low inductions (H � Hc2) and at low temperature (T � Tc) the phonons are
scattered by a random array of vortices and these behave as if they were cylinders
of normal metal [9,15]. The qualitative expression of the phonon conductivity as a
function of B is given by

Kph(0)

Kph(B)
= 1 + σ

B

Hc2

Kph(0)

K n
ph

, (7)

where σ is the average scattering diameter of the vortex line for the thermal phonons
(σ ∼ 0.5). Similarly, the electronic thermal conductivity as a function of B is
given by

Ke(0)

Ke(B)
= 1 + leaB


0
, (8)

where le is the mean-free path of electrons in zero field, 
0 is the flux quanta and a
is the effective scattering diameter of a vortex line for the free excitations.

(ii) At large inductions, i.e. close to Hc2 and at low temperature, the field-dependent
thermal conductivity has been analysed by Houghton and Maki [9]. They have
determined the thermal conductivity when (a) the temperature gradient is parallel
to the applied magnetic field and (b) the temperature gradient is perpendicular to
the applied magnetic field. The result of Houghton and Maki for the temperature
gradient parallel to the applied magnetic field is given by

�K ‖
K n

e

= −6μ

[(
1 − μ2

)
J1 −

(
1

4
π − μ

)]
, (9)

where

J1 =
∫ π/2

0

cos θ

cos θ + μ
dθ = π

2
+ 2μ√

1 − μ2
tanh−1

[
μ − 1√
1 − μ2

]
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and μ is the transport coefficient given by

μ = 2
√

π
�2

�2kcv
2
F

le

in which kc is the reciprocal lattice vector of the vortex lattice, vF is the Fermi
velocity, � is the order parameter, le is the electron mean-free path and �K ‖ is
the difference between the normal and superconducting state electronic thermal
conductivities.

Figure 7 shows the experimental thermal conductivity measurement of the samples
A1 and C1 with and without the trapped vortices. The bulk magnetization measurement
allows us to get the values of remnant magnetization for those samples.

The bulk magnetization measurement for A1 and C1 is shown in figure 8. The mag-
netization curves show that the trapped magnetic fluxes in A1 and C1 are 58 and 80 mT
respectively. Figure 7 shows that the effect on the electronic part of the thermal con-
ductivity by the scattering of electrons with the vortex cores is negligibly small, whereas
the phonons are strongly scattered causing an almost zero contribution to the net thermal
conductivity. The field dependence of phonon and electronic conductivities of eqs (7)
and (8) are used to interpret the thermal conductivity results with trapped vortices for the
samples A1 and C1. K n

ph is calculated from eq. (5) for normal metals using the value of
the parameters D and B from table 1. The phonon conductivities in the normal state for
A1 and C1 are 0.01 and 0.017 W/m-K respectively. The value of electron mfp, le, is cal-
culated using the expression (1/ρ) = 2e2SFle/3(2π�)3, where SF is the area of the Fermi
surface in momentum space in the first Brillouin zone and ρ is the electrical resistivity.
The values SF = 2.23 × 10−47 kg2 m2/s2, ρ = 2.37 × 10−9 and 1.12 × 10−9 �-m are

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1

10

100

K
S

[W
/m

-K
]

T[K]

Figure 7. Plot of KS vs. T . (�) C1 – zero field, (∗) C1 – trapped flux 81 mT,
(�) A1 − zero field, (◦) A1 − trapped flux 60 mT. Solid lines are the fitting curves of
eq. (6).
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Figure 8. Magnetization curves at T = 2 K with and without remnant magnetization
for (−−) A1, (—) C1.

used for samples A1 and C1 to calculate the electron mfp. The thermal conductivity model
defined in §3 gives a reasonable fit of the experimental data points as shown in figure 9,
when corrected using eqs (7) and (8) to take into account the presence of trapped vor-
tices. The error in the calculation of K is 〈(�K/K )2〉1/2 ∼= 6%. Figure 9 shows that the
deviation of the theoretical curve from the experimental data increases with the increase
of trapped flux which signifies that other mechanisms, such as inter-vortex tunnelling and
collective mode excitations of the flux line lattice, play a role at higher fields.

Figure 9. Effect of trapped vortices on the thermal conductivity of the superconduct-
ing state in samples A1 and C1. Solid lines represent the qualitative theoretical model
by Vinen et al at low inductions and low temperature.

Pramana – J. Phys., Vol. 78, No. 4, April 2012 645



J Mondal et al

As the flux lines act as normal metal cores randomly distributed over the sample
cross-section, they can be treated as point-like scattering centres to the thermally excited
phonons and BCS quasiparticles. The thermal conductivity results of samples A1 and C1
with trapped vortices are fitted with eq. (9) taking into account that the vortex cores are
randomly distributed point-like scattering centres. The fitting parameters in the presence
and absence of trapped vortices are summarized in table 2.

From table 2 we can see that the gap parameter α and the coefficient of momen-
tum exchange of electrons with the lattice vibration, A, decrease while the coefficient
of momentum exchange of phonons with the electrons, D, increases in the presence of
trapped vortices. The parameter A ∝ N 2/3 and the parameter D ∝ N−2, where N is
the effective number of conduction electrons per atom. As the vortices are trapped inside
the superconductor, the effective number of conduction electrons reduces because of the
bound excitations within the vortex core. The reduction in the gap energy α is due to the
low energy excitations close to the vortex core. The energy gap of these excitations is
very small and is given by ε0 ∼ �2

0/EF. So the effective energy gap will be �eff ∼ (�0−
ε0). Taking EF = 0.00018m0c2 = 91.8 for niobium and �0 = 1.86 (A1) and 1.78 (C1)
from the experimental fit data of the zero trapped vortex sample, we get ε0 ∼ 0.04 (A1)
and 0.034 (C1) leading to an effective energy gap of �eff ∼ 1.82 (A1) and 1.74 (C1). This
simple explanation gives an error of 2.4% for the fit parameter α.

Figure 10 shows the variation of thermal conductivity with the applied magnetic field
for the sample B1 with and without trapped vortices at 2 K. We can see that the value of
Hc1 and Hc2 are independent of the sample condition from the point of view of trapped
vortices. Both the curves are showing the same behaviour in the mixed state. In the
mixed state the phonon contribution is negligibly small; it is the electronic contribution
which increases with the increasing magnetic field as more and more quasiparticles start
contributing to the thermal conductivity. Eventually, as the applied field reaches Hc2,
the bulk of the superconductor is in the normal state while the surface remains in the
superconducting state to an extent of the order of coherence length ξ 0. The figure shows
a constant thermal conductivity between Hc2 and a value of the applied magnetic field
beyond the third critical field Hc3. So we could not find any effect of the surface sheath
on the measured thermal conductivity, as expected. Above Hc2, the specimen shows
thermal conductivity behaviour of the normal metal. But there is a marked difference
of the measured thermal conductivity data in the region 0 ≤ H ≤ Hc1 for the sample
with and without trapped vortices. No magnetic flux enters the samples up to the first

Table 2. Theoretical fitting parameters in the presence and absence of trapped flux
lines.

Sample A1 Sample C1

Parameters Zero flux Trapped flux (58 mT) Zero flux Trapped flux (81 mT)

α 1.86 1.78 1.78 1.70
L 2.45 × 10−8 2.45 × 10−8 2.45 × 10−8 2.45 × 10−8

A 1.00 × 10−5 1.77 × 10−4 1.00 × 10−6 7.94 × 10−5

1/D 402 1216 216 758
B 3.01 × 103 3.35 × 102 6.32 × 103 2.63 × 102
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Figure 10. Field dependence of the thermal conductivity with and without trapped
vortices measured with the field parallel to the heat flow direction at 2 K.

flux penetration at 180 mT. Below Hc1, the difference between the thermal conductivity
values of the two curves in figure 10 is due to the strong scattering of phonons by the
vortex cores as explained earlier.

At large inductions and low temperature, the field-dependent thermal conductivity is
represented by the Houghton–Maki theory described by eq. (9). A plot of μ vs. �K/K n

e
is shown in figure 11.

0.2
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0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6

Figure 11. �K/K n
e as a function of μ in sample B1. (�) Sample B1 without any

trapped flux in zero field, (�) sample B1 with an initial remnant magnetization of
about 58 mT. Solid line is the theoretical curve of Houghton–Maki.
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Figure 12. Plot of thermal conductivity in superconducting state in zero remnant field,
with remnant field and heating up the sample through Tc to exclude the flux lines to
reproduce the zero-field curve.

Figure 11 shows that when there are trapped vortices in zero field, the experimental data
points for 0.2 ≤ μ ≤ 0.6 lie below the theoretical curve as well as the baseline measure-
ment data in zero field without the trapped vortices. This might be due to the additional
contributions from the bound excitations in the form of tunnelling. Although the exact
cause is not yet clear, there is definitely an additional contribution to the thermal conduc-
tivity in case of initial remnant magnetization. An experiment can be conducted in future
with different remnant magnetizations at zero field and the corresponding thermal conduc-
tivity measurement will produce a systematic deviation from the Houghton–Maki theory
and the evidence for this new contribution to the thermal conductivity can be established.

Finally, figure 12 shows the measurements of the thermal conductivity of sample C1
after zero-field cooling, after the applied magnetic field was cycled from zero up to Hc2

and then back to zero, and after warming up the sample above Tc followed by zero-
field cooling. The remnant magnetization after cycling the applied magnetic field is
about 81 mT. As shown in figure 12, the phonons are strongly scattered by the vortex
cores. By raising the temperature of the sample above Tc (9.25 K), the remnant magnetic
field is homogeneously distributed throughout the normal conducting sample. By low-
ering the temperature below Tc, the magnetic flux is expelled from the superconductor
and a new thermal conductivity measurement reproduces the data obtained after the first
measurement, in the absence of any applied magnetic field.

5. Conclusions

The thermal conductivity as a function of temperature measured on large-grain niobium
samples in the Meissner state is well described by the model of ref. [8] within the
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experimental error of ±6%. The measurements clearly show the presence of a phonon
peak at around 2 K. One important observation is that the phonon peak is eliminated by
the presence of trapped vortices due to the strong scattering of phonons with vortex cores.
When the vortices are trapped inside the sample, the fit parameters indicate a reduction
of the gap energy α due to the low energy excitations having a very small energy gap
∼ �2

0/EF close to the vortex core. Also the effective number of conduction electrons
decreases due to the bound excitations in the vortex cores. The dependence of the thermal
conductivity with the applied magnetic field for the samples with and without trapped
vortices show the same Hc1 and Hc2 values as from the magnetization measurement.
Finally, when the temperature of the samples is cycled above Tc, the thermal conduc-
tivity measured for the sample in the absence of an applied magnetic field is restored. The
temperature dependence of the thermal conductivity at low temperature and low magnetic
field agrees qualitatively with the model of Vinen et al. In the vicinity of Hc2 the thermal
conductivity agrees quite well with Houghton–Maki theory for the virgin sample, i.e with-
out any trapped vortices. But an initial flux is trapped within the sample, the measured
thermal conductivity deviates from the Houghton–Maki theory and an increase in thermal
conductivity can be observed in the range of 0.2 ≤ μ ≤ 0.6. Future experiments with
different initial trapped vortices and subsequent measurement of the thermal conductivity
in the range of 0.2 ≤ μ ≤ 0.6 might help to interpret the deviation from the theory.
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