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A highly accurate method to solve Fisher’s equation
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Abstract. In this study, we present a new and very accurate numerical method to approximate the
Fisher’s-type equations. Firstly, the spatial derivative in the proposed equation is approximated by
a sixth-order compact finite difference (CFD6) scheme. Secondly, we solve the obtained system
of differential equations using a third-order total variation diminishing Runge—Kutta (TVD-RK3)
scheme. Numerical examples are given to illustrate the efficiency of the proposed method.
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1. Introduction

In 1937, Fisher proposed a nonlinear reaction—diffusion equation to describe the propa-
gation of a viral mutant in an infinitely long habitat [1]. This equation is encountered in
various applications such as gene propagation [1,2], tissue engineering [3], autocatalytic
chemical reactions [4], combustion [5], and neurophysiology [6]. The proposed nonlinear
reaction—diffusion equation is defined by

ou 02

u
m = /3@ +au(l —u), x € (—00,00), >0, (D

where f is the diffusion coefficient, « is the reactive factor, ¢ is the time, x is the distance
and u(x, t) is the population density. The analytical properties and subsequent compu-
tation for minimum wave speed have been easily interpreted by removing the explicit
dependence on coefficients « and g in (1) by a suitable rescaling of x and ¢. After rescal-
ing the time 1* = Bt and space x* = (8/a)'/*x, and dropping the asterisk notation, eq. (1)
becomes [7,8]

ou  9u

—=— 1 —u). 2

o — a2 T u(l —u) 2)
Equation (2) may be transformed into an ordinary differential equation by substituting
u = u(z) = u(x — ct). Kolmogorov et al [9] showed that with appropriate initial and
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boundary conditions, there exists a travelling wave solution to eq. (2) of wave speed ¢ for
every ¢ > 2.

In the past several decades, there has been great activity in developing numerical and
analytical methods for the Fisher’s equation. Ablowitz and Zeppetella [10] found explicit
solutions of the Fisher’s equation for a special wave speed. Asymptotic solutions have
been found for the d-dimensional Fisher’s equation in [11]. Singular perturbation method
has been applied to solve eq. (2) by Puri et al in [12,13]. Carey and Shen [7] solved the
Fisher’s reaction—diffusion equation by a least-squares finite element approximation. In
[14], a nonlinear transformation was introduced to solve the Fisher’s equation. Adomian’s
decomposition method has been applied to approximate the solutions of the proposed
equation in [15,16]. Qiu and Sloan in [17] used a moving mesh method to simulate
travelling wave solutions of the proposed equation. Al-Khaled in [18] has presented the
Sinc collocation method to find the solutions of Fisher’s equation. In [19], the authors
investigated the solution of the Fisher’s equation by the pseudospectral method. Recently,
Mittal and Jiwari [20] have applied the differential quadrature method to approximate the
solution of the Fisher’s equation. A numerical scheme for solving the Fisher’s equation,
which permits the usage of very large discretization mesh sizes in space and time, has
been proposed in [21,22].

As we know, the compact finite difference method [23,24] is a powerful mathemati-
cal device for finding approximate solutions of various kinds of equations. Wirz et al
presented a compact finite difference method to approximate the hyperbolic equations
[25]. In [26], a compact finite difference scheme has been applied to solve Euler and
Navier-Stokes equations. Dehghan and Taleei used a compact split-step finite difference
method to solve the Schrodinger equations [27]. A high-order compact finite difference
method was applied for systems of reaction—diffusion equations in [28]. The solution
of the Helmholtz equation was approximated by a sixth-order compact finite difference
(CFD6) method in [29]. In [30], a CFD6 scheme has been presented to approximate the
integro-differential equations. Sari and Giirarslan in [31] had combined a CFD6 scheme
for first derivative in space and a third-order total variation diminishing Runge—Kutta
(TVD-RK3) scheme in time to approximate the Burgers’ equation. In this paper, we
present a CFD6 scheme to approximate the second-order spatial derivative in the Fisher’s
equation. A TVD-RK3 [32,33] method has been applied to solve the obtained system.
We shall see from the numerical results that the proposed method is more accurate than
the method presented in [20].

This paper is organized as follows. In §2, a sixth-order compact finite difference
scheme for the second-order spatial derivative in conjunction with a TVD-RK3 method
in time is presented to solve the Fisher’s equation. Numerical results that illustrate the
efficiency of the proposed method are reported in §3. Finally, a conclusion is given in §4.

2. Method and discussion
In this section, we introduce a CFD6 scheme for the second-order spatial derivative and
implement it to solve the Fisher’s equation. Compact finite differencing is a means

for achieving high-order discretization of differential equations without enlarging the
bandwidth of the resulting set of discrete equations. This method uses the values of
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the function and its derivatives at consecutive points. In order to find numerical solu-
tion of the Fisher’s-type equations, it should be discretized in both space and time. The
spatial region [a, b] is discretized by N equidistant points with space step h = x; 1| — X;,
i=1,...,N—1, where

a=Xx1 <xp<---<xy=>b. 3)

Lele in [24], introduced a fourth-order approximation for the second-order derivative at
interior points by

, ” Wipr —2u; +uin Wip1 — 2u; + uj_;
au] | +ul +oul =b e a h; , 4)
where
4 1
a=§(1—a), b:g(—l—i—lOa). 5

The relations between the coefficients «, a and b are derived by matching the Taylor
series coefficients of various orders. The sixth-order tridiagonal scheme is obtained by
substituting « = 1/10 in eq. (4).

12
wi_ + 10u] +uf | = ﬁ(ui—l —2u; 4+ uit1). (6)

Compact schemes are introduced for the nodes near the boundary by Taylor series expan-
sion in [30]. Similarly, for the new compact schemes in boundary points, we use Taylor
series expansion. Consider the following scheme at first point:

4 " 12
10u + ufy = ﬁ(alul + caup + a3uz + aauy + asus + o), (7
where o;,i = 1, ..., 6, are the parameters to be decided. To obtain a sixth-order scheme,

Taylor series expansion about point x; are inserted in eq. (7) and the terms by the order
of h are collected. Then terms of various orders are placed equal to zero. This gives the
following linear system of equations:

| T B 1 1 a 0

o1 2 3 4 5 a 0

0 12 2 9/2 8 252 a | | 11712 ®
0 1/6 4/3 9/2 3273 125/6 || as | T | 1712 |°

0 1/24 2/3 27/8 3273 625/24 | | s 1/24

0 1/120 4/15 81/40 128/15 625/24 ) \ s 1/72

Finally, the unknown parameters are obtained by getting solution of the system of eq. (8).
In a similar manner we obtain a six-order scheme at the end point. Therefore, the sixth-
order schemes for boundary points x; and x, can be written as

10u] +14) = (12/h%) ((115/36)u; — (1555/144) 15 + (89 6)uu3 — (173 /T2ty
+(151/36)us — (11/16)us),
10 = (12/h2) (11 16)uy s+ (151/36)uy 4 —(773/72)uy_3
+(89/6)un_r—(1555/144)un_1 +(115/36)uy).
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Equation (6) together with eq. (9) may be written in the matrix form

BU" = AU, (10)
where
101 0---0
110 1
B=1 " 0 ;
1 10 1

0--0 110/,

115/36 —1555/144 89/6 —773/72 151/36 —11/16 0

1 -2 1 0 0
12
A=n
: 0 0 1 -2 1
0 —11/16 151/36 —773/72 89/6 —1555/144 115/36/,,

Now, we review the TVD-RK3 method to approximate the solution of ordinary
differential equation of the form

u;, = L(u), (11)

where L is a linear/nonlinear operator. The time interval [0, 7] is divided into M small
cells equally and let k = T/M (time mesh size). The TVD-RK3 method to solve the
proposed system is given by (see [33])

uld = y" +kL®W"),

3 1 1
@ — 2um 4~y 4 ke
u 4u +4u +4 (),

n+l l n E ) 2 2
u = 314 + 3u + 3/’cﬁ(u ), (12)
where n is the step of the method.

Now, we briefly describe our method to solve the Fisher’s-type equations. The second-
order spatial derivative in the proposed equations is obtained via eq. (10). Then the
obtained system of ordinary differential equations is solved by the TVD-RK3 method.
In the next section, some numerical examples are studied to demonstrate the accuracy and
efficiency of the proposed method.

3. Illustrative examples
In this section, four examples are provided to illustrate the validity and effectiveness of

the proposed method. In all the examples, the initial and boundary conditions are directly
obtained from analytical solutions. The computations associated with the examples in this
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paper are performed using MATLAB 7. Although, we have considered problem (2) for
our discussion, one can apply the proposed method to solve the more general problem

u  d%u 4 F)
== u),
ar  9x?
where F is areal function. Therefore, we consider this problem for our numerical examples.

Example 1. Consider the Fisher’s equation given in [34]:

U =uxx—|—u2(1—u), 0<x <1, (13)

with the initial condition
1

= —F. 14
ux,0) = s (14)
In this case the exact solution is given by
1
ulx,t) = (15)

1 + e(x—vt)/s/i.

Comparisons are made with analytical solution and differential quadrature method
(DQM) [20] for N = 13 and k = 0.00005 in table 1. It shows that the numerical solu-
tions are in good agreement with analytical solutions and it is observed that the new CFD6
method is more accurate than the DQM. Absolute error between the numerical and analyt-
ical solution is also depicted at different time levels for N = 20, k = 0.0001 and N = 80,
k = 0.00005 in figure 1.

Example 2. Consider the following generalized Fisher’s equation in domain [0, 1]:

Uy =ty +u(l —u®) (16)
with the initial condition
u(x,0) = {ltanh (—Lx>+l}2/a. 17)
2 220 + 4 2
The exact solution is presented in [20] by
u(x,t) = {ltanh{— £ (x— otd t)}+1}2/a. (18)
’ 2 220 1 4 V2a +4 2

In table 2, the obtained results for N = 13, k = 0.00005 and o« = 1 are compared
with the exact solution and the solution of the DQM for t = 0.5 and 1.0. Figures 2 and 3

Table 1. Comparison of results for Example 1 with N = 13 and & = 0.00005.

t X DQM [20] New CFD6 Exact Absolute error

0.5 0.25 0.51831 0.518298 0.518298 1.41e — 010
0.75 0.43038 0.430373 0.430373 3.96¢ — 010

1.0 0.25 0.58012 0.580110 0.580110 3.59¢ — 010
0.75 0.49243 0.492418 0.492418 1.71e — 010

Pramana - J. Phys., Vol. 78, No. 3, March 2012 339



Mehdi Bastani and Davod Khojasteh Salkuyeh
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Figure 1. Log 10 of the absolute error in Example 1 at different time levels. (a)
k =0.0001 and N = 20, (b) kK = 0.00005 and N = 80.

Table 2. Comparison of results for Example 2 witho = 1, N = 13 and & = 0.00005.

t X DQM [20] New CFD6 Exact Absolute error

0.5 0.25 0.33412 0.334094 0.334094 2.27¢ — 011
0.75 0.27838 0.278353 0.278353 5.00e — 011

1.0 0.25 0.45576 0.455739 0.455739 2.30e — 011
0.75 0.39544 0.395411 0.395411 4.80e — 012
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Figure 2. Log 10 of the absolute error in Example 2 with « = 1 at different time
levels. (a) k = 0.0001 and N = 20, (b) k = 0.00005 and N = 80.

illustrate the graph of the absolute error of the numerical solutions with « = 1 and 6 at
different time levels for N = 20, £k = 0.0001 and N = 80, £k = 0.00005. As can be seen
from the figures, the proposed method gives highly accurate results.

Example 3. 'We now consider the Fisher’s equation given in [16]:

U = Uy, +ou(l —u), (19)
subject to the initial condition
1

u(x,0) = (20)

(1 + evaltry2’
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Figure 3. Log 10 of the absolute error in Example 2 with « = 6 at different time
levels. (a) k = 0.0001 and N = 20, (b) k = 0.00005 and N = 80.

where the exact solution is given by

1
(1+ e\/%“%“’)z.

u(x, 1) = 1)

In table 3, we give the absolute errors between the exact and numerical results obtained
by the new CFD6 for N = 13, k = 0.00005 and ¢ = 6. A comparison with the results
given in table 3 shows that the proposed method is more accurate than the DQM. In order
to see the error distributions in this example with o = 6, figure 4 is plotted for N = 20,
k =0.0001 and N = 80, k = 0.00005.
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Table 3. Comparison of results for Example 3 witha = 6, N = 13 and k = 0.00005.

t X DQM [20] New CFD6 Exact Absolute error
0.5 0.25 0.81847 0.818393 0.818393 4.26e — 010
0.75 0.72592 0.725824 0.725824 4.43¢ — 009
1.0 0.25 0.98293 0.982919 0.982919 3.18¢ — 011
0.75 0.97208 0.972071 0.972071 1.62¢ — 010
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Figure 4. Log 10 of the absolute error in Example 3 with « = 6 at different time
levels. (a) k = 0.0001 and N = 20, (b) k = 0.00005 and N = 80.
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Table 4. Comparison of results for Example 4 with a = 0.2, N = 13 and

k = 0.00005.
t X DQM [20] New CFD6 Exact Absolute error
0.5 0.25 0.67492 0.675373 0.675373 7.13¢ — 011
0.75 0.72772 0.728174 0.728174 9.74e¢ — 011
1.0 0.25 0.72044 0.720433 0.720433 1.02¢ — 010
0.75 0.76946 0.769460 0.769460 8.10e — 011
-10.5

-13.5

-12.5

-13.5

716 1 1 1
0 0.2 0.4 0.6 0.8 1
(b) x
Figure 5. Log 10 of the absolute error in Example 4 with a = 0.2 at different time
levels. (a) k = 0.0001 and N = 20, (b) k = 0.00005 and N = 80.
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Example 4. 1In this example, we consider the nonlinear diffusion in Fisher’s-type
equation in domain [0, 1]:

Uy =ty +u(l —u)(u — a), O<a<l, 22)

subject to the initial condition

1 1 X
u(x,0) = S(1+a)+3 (1 —a)tanh[fz(l —a)Z}, 23)
where the exact solution is given by (see [35])
1 11 x (1—d%»
u(x,t)—z(l—i—a)—i—(z—za) tanh{ﬁ(l—a)z—i—Tt}. (24)

Table 4 presents a comparison between the new CFD6 method solutions and the DQM
solutions witha = 0.2, N = 13 and k = 0.00005. As we see, our method is more effec-
tive than the DQM. For more investigation, the absolute error is plotted for this example
witha = 0.2 in figure 5 for N = 20, k = 0.0001 and N = 80, k = 0.00005.

4. Conclusion

In this paper, the solution of the Fisher’s equation is successfully approximated by a new
high-order numerical method. A new CFD6 scheme for the second-order derivative in
space combined with the TVD-RK3 method in time to solve the proposed equation has
been presented. The obtained numerical results are compared with the exact solution and
the earlier work in [20]. As the numerical results showed, performance of the method
is in excellent agreement with exact solution. It may be concluded that the new CFD6
method is a very powerful and efficient technique for finding approximate solution for
various kinds of linear/nonlinear problems.
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