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Octonionic Lorenz-like condition
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Abstract. In this study, the octonion algebra and its general properties are defined by the Cayley—
Dickson’s multiplication rules for octonion units. The field equations, potential equations and
Maxwell equations for electromagnetism are investigated with the octonionic equations and these
equations can be compared with their vectorial representations. The potential and wave equations
for fields with sources are also provided. By using Maxwell equations, a Lorenz-like condition is
newly suggested for electromagnetism. The existing equations including the photon mass provide
the most acknowledged Lorenz condition for the magnetic monopole and the source.

Keywords. Lorenz condition; octonion; Maxwell equations; Klein—Gordon equation; magnetic
monopole.

PACS Nos 03.50.De; 02.10.De

1. Introduction

The quaternions, octonions and Clifford algebra, which are especially used in quantum
theories and symmetries of elementary particles in high-energy physics, are based on
four and eight components, respectively. There is a lot of studies in physics with quater-
nions and octonions. Majernik [1-3], for example, studied the general field, potential
and wave equations in the quaternionic and complex quaternionic forms. Gamba repre-
sented Maxwell equations using a different octonionic form with Modul 7, which is a
multiplication method for products of octonion’s units [4]. Tamgh and Ozgiir wrote the
Dirac equation and angular momentum with complex quaternions [5]. The gauge trans-
formation and the electromagnetic energy conservation with biquaternions were investi-
gated by Tanigh [6]. Tolan et al reformulated the electromagnetism with octonions [7] and
Candemir et al rewrote the Proca—Maxwell equations with hyperbolic octonions for mag-
netic monopoles [8]. Quaternionic and octonionic spinors and the Dirac equation were
investigated by Toppan [9]. Also, Bernevig et al defined the generalization of quantum
Hall phenomenon in eight-dimensional space with octonions [10]. Vlaenderen and Waser
[11] and Negi et al [12] investigated the electromagnetism and electrodynamics equations
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with quaternions and complex quaternions. Jancewicz investigated the electrodynam-
ics with Clifford algebra and multivectors [13]. Adler [14] described the quaternionic
quantum mechanics and quantum fields.

There are several products for octonion units. In this study, the Cayley—Dickson nota-
tion is used. The general octonionic field, potential equation for field with source can be
represented by this method in the octonionic form. In general, the electromagnetic fields
are the solutions of Maxwell equations, which can be defined by four vectorial equations,
two quaternionic equations or a single complex quaternionic equation (equivalent to a
Clifford algebra equation). They are represented by an octonionic equation in the present
paper.

Organization of the paper is as follows: Section 2 introduces the octonion algebra
and its properties. The general octonionic field equations, octonionic potential equation
for fields with sources and the Maxwell equations are presented in §3. Moreover, the
octonionic Maxwell equations for the magnetic monopole and the source are given. By
using the Maxwell equations, a Lorenz-like condition is also derived from the magnetic
and electric fields in §4. In §5, the duality symmetry in octonionic form is briefly given.
Conclusions are drawn in §6.

2. Octonion algebra

The octonion algebra is nonassociative and noncommutative. In fact, octonions form an
alternative division algebra. A real octonion P, which possesses eight octonion units de-
notedbye,, u€{0,1,..., 7}, is[7,15,16]

7
P= Z Pu€u,
n=0

where p,s are real numbers and ey is a unit of the algebra. An octonion is also transcribed
as a linear combination of two quaternions as follows:

P=P + Pey,

where P’ and P” are quaternions. The subtraction and addition of two octonions P and Q
are defined as

,
PEQ=) (puFaneu

u=0
It is necessary to define the products of octonion basic elements before the product
of two octonions. According to Cayley—Dickson method, the product rules for octonion
units can be defined as [7]
—ese; = e;e5 = &, (D

€48, = —¢e; =€, eqey = —e, )
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ee; = —5;;€0 + ke, €€; = —f;je) — €;jke, 3)
—eje; = e€; = —J;;€; — i€, “)

where €, = e41y, i, j, k € {1, 2, 3}. The multiplication of octonionic basic elements can
be represented by a multiplication table given in table 1.

As mentioned, the multiplication of octonions is nonassociative, but in special cases,
when two basic elements are the same, the product is associative (no summation over
repeated indices):

(e,ueu) € = eu(euev)9 (5)
(e,e,)e, = e,(e.e,). (6)

According to the above rules, the octonionic product of two octonions P and Q is
transcribed as

PQ = Py0o+ PIQ+PQy—P-Q+PxQ,

where Py, Q¢ and 13, 6 are the scalar and vectorial parts of octonions P and Q respectively.
If P and Q possess only imaginary parts, the scalar and vectorial products of P and Q can
be written as

P Q= —1[PQ+ (PO
and
PxQ= %[PQ - (PQ)"],
where P* = Py — P. In other words, the conjugate of an octonion is defined as changing

of the sign of imaginary parts of octonion [15-18]. Hence, the conjugate of the octonions
possesses some properties as follows:

PH* =P, P+Q"=P"+Q", (PQ*=QP.

Table 1. The product diagram of octonion units in Cayley—Dickson notation.

€o €] € €3 €4 €5 [ €7
() €y €1 € €3 €4 €es €q €7
€] €] —€p €3 —€n €5 —e€y4 —e7 €e
() (5] —e€3 —€p €] € €7 —e4 —e€5
€3 €3 € —e] —€0 €7 —e€q €5 —e€4
€4 €4 —e€5 —€q —e7 —€p €] € €3
€5 €5 €4 —e7 € —€] —€p —€3 €
€ [ €7 €4 —e5 —€en €3 —€y —e]
€7 €7 —€q €5 €4 —e3 —€) €] —€p
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The square of the norm for an octonion P:
7
N®) =PP* =3 (p,)
n=0

is a real number and the identity

N®PQ) =NP)NQ)
is valid for it. The inverse of an octonion P is
S
NP

For complex z,,s, the complexified octonion Z is defined as

7
Z = Z 2.
u=0

The octonionic conjugate Z* of Z is Z* = z9 — 217:1 z;€;. It follows that the product
ZZ* is equal to the following equation:

,

_ _ _ 2

NZ)=22"=2"Z= 2.
n=0

According to Cayley—Dickson method, the octonionic differential operator D can be
defined as
i 0 a 9 a

D=-—+e—+e— +e—. 7
c ot ox 68y oz ™

Its octonionic conjugate is

L, 10 0 0 0
D= -— —es— —eg— —e;—. (8)
c 0t ox dy 9z

The product D D* will be

DD* — 182+82+82+82_ 1 9? ©)
Az ax? o 9y? o 92 c? 012’
where A is the Laplacian
2 02 02
A=—+_—+—. (10)

0x2  9y? 972

3. Maxwell equations for magnetic sources and massive photon

To consider a more general case, we transcribe the Maxwell equations in the presence of
electric and magnetic sources. The possible existence of magnetic charges has fascinated
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physicists since Dirac’s classic papers [20]. In addition to the electric charge density o
and the electric current density ] one introduces the magnetic charge density p’ and the
magnetic current density j/. In CGS system of units, the Maxwell equations assume more
symmetric form (comp. [7] and [19], eq. (6.150)):

V-E =4np, (11)
V-B=4mp, (12)
V xE 10B 4z, (13)
X -—=——j/,
at c']
10E 4
VxB- - =" (14)
c Jt c

where E is the electric field vector and B is the magnetic induction vector.

In electromagnetic theory, without magnetic charges, the very existence of the vector
potential A is assured from the equation V - B = 0 by the Poincaré lemma. Equation (12)
shows that if magnetic charges are present this lemma cannot be applied. Let us quote
the paper by Kyriakopoulos [21]: “The theories of electrodynamics involving magnetic
monopoles can be classified into two groups depending upon the number of electromag-
netic potentials employed in the formalism. Dirac [20] in his original paper formulated the
theory in terms of a single vector potential A#, introducing the so-called Dirac string, at
the end of which a magnetic monopole is attached, and along which the vector potential is
singular. This is the approach followed by most people. Another approach was originated
by Cabibbo and Ferrari [22] who introduced two vector potentials A* and *A*.”

Our article is in the same avenue. In addition to the traditional scalar potential ¢ and
vector potential A one can introduce extra potentials ¢’ and A’ related to the magnetic
sources. The electromagnetic field quantities are expressed by them in the following
relations:

1 0A
E=-Vop—~-—+VxA, (15)
c ot
, 1 0A’
B=-Vop+-—+VxA. (16)
c 0t

Substitution of (15) in eq. (11) yields
10

_A(p___V.A:4j'[p_ (17)
c ot
The Lorenz condition
10
VA+-2=0 (18)
c ot

allows to replace the second term at the left-hand side of (17) by (1/c?) (3%¢/0t?) to
obtain the following equation:

Ap — = — = —4mp, (19)
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which is the inhomogeneous d’Alembert equation. Similarly, the substitution of (16) in
eq. (12) provides

10
—A¢Q' + - —V.A =4xp. (20)
c 0t

The Lorenz condition for potentials ¢’ and A’ should have a different form, namely

1 d¢/
v.A—-2 _p Q1)
c ot
to replace the second term in (20) by (1/c?) (3%¢’ /%) and to obtain again the inhomo-
geneous d’ Alembert equation
A - L (22)
— = —— = —4np’.
¢ ¢ 9r? p
Inserting (15) and (16) into eq. (13) and using the identity V x (V x A) = V(V - A) —
V2A yields

13_(,0’>_AA/ lzaA/ 4,

v(v.-A-- @ _ Ty
( c ot ot? ¢!

Due to the Lorenz condition (21), this equation reduces to the inhomogeneous d’ Alembert
equation:

1 3°A"  4m
AN — — — = —j. 23
c? 912 . 23)
Similarly, insertion of (15) and (16) into eq. (14) and using the Lorenz condition (18)
leads to the inhomogeneous d’ Alembert equation

1 3’A 4r
AA Ry j (24)
The fact that the substitutions of relations (15) and (16) into the Maxwell equations
lead to the inhomogeneous d’Alembert equation for all four potentials, is a proof that
these relations are proper ones. Equations (22) and (23) demonstrate that the additional
potentials ¢" and A’ are related to the magnetic sources in analogy to the relation of ¢ and
A to the electric sources [22a].
The next step of generalization is an assumption that photons possess a rest mass. Let
it be equal to m. The d’Alembert operator DD* = A — (1/c?) (9/3t*) should be replaced

by the Klein—Gordon operator

1 9?2

2 * 2
~ @ an =Pk =

where ky = mc/h. Accordingly, the Maxwell equations (5)—(8) have to be modified in
order to imply, by relations (9) and (10), the inhomogeneous Klein—-Gordon equations.

170 Pramana - J. Phys., Vol. 78, No. 2, February 2012



Octonionic Lorenz-like condition

The Maxwell equations for massive photons possess the following forms:

V-E+klp = 4mp, (26)

V-B+kig =dmp, (27
1B 4

VxE+ - 4 12A = -2y, (28)
c ot c
1 9E 4

VxB— - _j2A =" (29)
c Jt c

(The introduction of the term kggo in the photon wave equation yields the Klein—Gordon
equation [23]).

The substitution of (15) and (16) along with the Lorenz conditions (18) and (21) into
eqgs (26)—(29) lead to the following inhomogeneous Klein—Gordon equations:

DD*¢ — kg = —4np, (30)
DD*¢' —kiy' = —4mp), 31
4
DDA — kA = — 2§, (32)
C
4
DD*A — I2A = - j. (33)
C

4. Octonionic field equations
The Maxwell equations (11)—(14) constitute a collection of eight scalar equations. There-
fore, octonions with their eight components are an appropriate tool for uniting the

equations in a single formula. The octonionic electromagnetic field expressed in the
Cayley—Dickson notation is

F=iB.e; +iBye2+iBze3 + E.e5 +E}VCG+EZC7. (34)
The current density expressed by octonions can be given as

47[ ./ ./ ./ . ’ . .o .
J=— (—cpeotj/er+jjer+jles +icp'es —ijes —ijes —ij.er). (35)
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The potential in the octonion algebra will be chosen as follows:
O = pey + A;el + A/yez + A/Ze3 + i(p’e4 —iAe5 — iAye6 —iA.eq. (36)
At this stage, the equation for the general octonionic field will be
DF —kjd =]J. (37

It is termed as the Proca—Maxwell equations for electromagnetism. Its two terms at the
left-hand side written explicitly in components possess the form

0E, OJE, OF; 10B, 0E, 0E,
DF = | —— — — — e+ |—— - +—)e
ox ay 0z c ot ay 0z

10B, OE. OE 19B, JE, OE
+<———y+—z— *>e2+(———z——’+ ")es

c ot ax a9z c ot ax dy

4 9B, n 0B, N 9B, 4 10E, 9B, n 0B,
i — es+i|— —— 4+ — e
ox dy az ) c ot dy 0z ’

4 oE, n oB, 0B, e 4+ 10E, 0B, N 9B, e
i\ —— — i|l- - —
c ot ax 0z o c Jt dax ay 7

and
—ki D= —k} (cpeo—i-A;el+A}’,e2+AZ’e3+i<p’e4 —iAces —iAyeq—iAes).

The octonionic field equation (37) yields the following equalities for the coefficients in
front of the octonionic units:

_ - =Ko =—4np, 38
ax dy 0z 0¥ e (38)
10B, 0E, OE, s, 4T,

- - —_— = —k{A = —j., 39
c ot 0z dy 0% ¢ Jx (39)
10B, 0E, OE, , ., 4T,

- = — —k{fA = —j, 40
c ot + dx 0z 0%y ¢y (40)
10B 0E, 0E, ,  4m

- — kAl =—]/, (41)
c ot ox ay c

0B, 9B, 0B )

— — ki = 4mp/, 42

ax ay + 0z 0¥ sl “2)

10E, 0By, 0B 47

z 2 .
—— 4+ — — — + k{A = —— i, 43
c3t+8z 8y+0x ch (43)

10E, 0B, 0B, 5 .
- = — kiA, = ——,, 44
c 0t + ax 9z thody c Iy “@4)
10E, 0B, 0B, ’ 4 .
- - — kiA, = —— .. 45
c ot ox + ay +hoA: c )z (45)

In the above equations, eq. (38) is equivalent to eq. (26), eqs (39)—(41) correspond to
three components of eq. (28), eq. (42) is the same as eq. (27) and eqs (43)—(45) constitute
eq. (29).
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5. Duality symmetry

By using identity (1) we can write (34) as
F =iB — ¢E. (46)

6. Conclusions

Octonions are used for various subjects such as gravity, field theory and supersymmetry.
Octonions, which are similar to the complex quaternions and dual quaternions from the
point of view of components, are an eight-dimensional nonassociative algebra. On the
other hand, the complex quaternions and dual quaternions include the definition of eight-
dimensional component form of the four-dimensional numbers under the same rules. In
this paper, the general field equation, the potential equation, for fields with sources and
Maxwell equations have been transcribed by octonions. In the vectorial notations, the
general field equation, potential equation and Maxwell equations are defined with two,
four and four vectorial equations respectively. We represent all these equations as a single
equation in octonionic form. These equations are arranged from general to special. The
expanded Maxwell equations in the presence of ky are valid when the mass of photon
is nonzero. In spite of experimental efforts, it has not been decided at present whether
the photon has got a mass. As such, the expanded Maxwell equations only will stay as
a theoretical study [3]. In a similar way, the existence of magnetic monopoles is also a
theoretical study.

There are many definitions for the multiplications of octonion units. A usual method
is used in this article. Because of the different products of octonion units in each of
the method, the definitions for the differential operator, field, potential and source cause
some differences. It is seen that the equations transcribed by the octonionic methods and
their solutions are the same as vectorial, quaternionic, complex quaternionic and dual
quaternionic definitions.

The study starts with the Maxwell equations for electric and magnetic sources. Hence
an equation relating the field quantities to four electromagnetic potentials is proposed. In
order to fulfill the inhomogeneous d’ Alembert equation for them, a Lorenz-like condition
for two new potentials is suggested. The fact that the substitution of relations (15) and (16)
into the Maxwell equations lead to the inhomogeneous d’ Alembert equation for all four
potentials, is a proof that these relations are proper ones. Equations (19) and (23) demon-
strate that the additional potentials ¢” and A’ are related to the magnetic sources in analogy
to the relation of ¢ and A to the electric sources. Equations (26)—(29) and the derivation
of egs (30)—(33) in terms of the four potentials (¢, A), (¢’, A’) using Lorenz-like condi-
tion are new. The photon rest mass is also added to the computations, which implies the
inhomogeneous Klein—Gordon equations for the potentials. The newly suggested Lorenz-
like condition and the complex octonionic Maxwell equations with magnetic monopole
and magnetic current density will contribute to the existing studies in literature. In other
words, it is proved that the previous representations with quaternions, biquaternions and
octonions for electromagnetism can be altered and rewritten using Lorenz-like condi-
tion, alternatively. The second-order differential equations (30)—(33) are expressed as a
first-order equation (37) for an octonionic field.
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At the end of these computations, it is shown that the octonions can be used for all
these computations and also that we possess the compact, useful representations for the
electromagnetism.
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