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Abstract. The approximate analytical bound-state solutions of the Schrödinger equation for the
Wei Hua oscillator are carried out in N -dimensional space by taking Pekeris approximation scheme
to the orbital centrifugal term. Solutions of the corresponding hyper-radial equation are obtained
using the conventional Nikiforov–Uvarov (NU) method.
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1. Introduction

The search for exact bound-state solutions of wave equations, relativistic or non-relativistic,
has been an important research area in quantum mechanics because they contain all the
information of the quantum system. It is well known that the exact solutions are possible
only for a few sets of quantum systems such as the Coulomb, the harmonic oscillator, the
pseudoharmonic potentials and others [1–5]. The analytical exact solutions of the wave
equation with some exponential-type potentials are impossible for l �= 0 states. So, the
next best thing to do is to find approximate analytical solutions of a given potential by
appropriate approximation techniques. Therefore, approximate schemes like the Pekeris
approximation [6–8] and the approximation scheme suggested by Greene and Aldrich [9]
have to be used to deal with the orbital centrifugal terms. Some of these exponential-type
potentials include the Morse potential [10], the Hulthen potential [11], the Pöschl–Teller
potential [12], the Woods–Saxon potential [13], the Kratzer-type and pseudoharmonic
potential [14], the Rosen–Morse potentials [15], the Manning–Rosen potential [16] etc.

Recently, there has been a renewed interest in solving simple quantum mechanical sys-
tems within the framework of the Nikiforov–Uvarov (NU) method [17]. This algebraic
technique is based on solving the second-order linear differential equations, which has
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been used successfully to solve Schrödinger, Dirac, Klein–Gordon and Duffin–Kemmer–
Petiau wave equation in the presence of some well-known central and non-central potentials
[18–27]. The aim of this work is to present the approximate solutions of the Schrödinger
equation with the Wei Hua [28] oscillator in N dimensions for l �= 0 states using the
conventional NU method.

This paper is organized as follows: After a brief introductory discussion of the NU
method in §2 and that of the eigenvalues and eigenfunctions in N dimensions in §3,
we obtain the eigenvalues and eigenfunctions for Wei Hua oscillator through the Pekeris
approximation and NU method in §4 and finally conclusions have been drawn in §5.

2. Basic equations of Nikiforov–Uvarov method

The Nikiforov–Uvarov (NU) [17] method provides us an exact solution of non-relativistic
Schrödinger equation for certain potentials. This method is based on solutions of general
second-order linear differential equation with special orthogonal functions [29]. For a given
real or complex potential, the Schrödinger equation is reduced to a generalized equation of
hypergeometric type with an appropriate s = s(x) coordinate transformation. Thus, it can
be written in the following form:

ψ ′′(s) + τ̃ (s)

σ (s)
ψ ′(s) + σ̃ (s)

σ 2(s)
ψ(s) = 0, (1)

where σ(s) and σ̃ (s) are polynomials, at most second degree and τ̃ (s) is a first-degree
polynomial. Hence, the Schrödinger equation or the Schrödinger-like equations can be
solved by means of this method for potentials we consider. To find a particular solution of
eq. (1), we use the separation of variables with the transformation

ψ(s) = φ(s)y(s). (2)

It reduces eq. (1) to an equation of hypergeometric type,

σ(s)y′′(s) + τ(s)y′(s) + λy(s) = 0 (3)

and φ(s) in eq. (2) is defined as a logarithmic derivative in the following form and its
solution can be obtained from

φ′(s)
φ(s)

= π(s)

σ (s)
. (4)

The other part y(s) is the hypergeometric-type function whose polynomial solutions are
given by Rodrigues relation

y(s) = Bn

ρ(s)

dn

dsn
(σ nρ(s)), (5)

where Bn is a normalizing constant and the weight function ρ(s) must satisfy the condition

d

ds
(σ (s)ρ(s)) = τ(s)ρ(s). (6)

The function π(s) and the parameter λ required for this method are defined as

π(s) = σ ′ − τ̃

2
±

√(
σ ′ − τ̃

2

)2

− σ̃ + kσ (7)
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and

λ = k + π ′(s). (8)

Here, π(s) is a polynomial with the parameter s and the determination of k is essential for
calculating π(s). Thus, to find the value of k, the expression under the square root must
be the square of a polynomial. Hence, the new eigenvalue equation for the Schrödinger or
Schrödinger-like equation becomes

λ = λn = −nτ ′(s) − n(n − 1)

2
σ ′′(s), n = 0, 1, 2, 3, ... , (9)

where

τ(s) = τ̃ (s) + 2π(s) (10)

and it will have a negative derivative.

3. Eigenvalues and eigenfunctions in N dimensions

In this article, we use NU method to deal with the N -dimensional (N ≥ 3) Schrödinger
equation and obtain the eigenstate and eigenvalue for the anharmonic oscillators. The
extension sought by us, although straightforward, is quite instructive because laws of
physics in N spatial dimensions may often lead to insights concerning laws of physics
in lower dimensions [30–32].

Consider the motion of a particle of mass m in an N -dimensional Euclidian space. The
time-independent Schrödinger equation for any integral dimension is given by [30–32](

− h̄2

2m
	2

N + VN

)

 = E
. (11)

Here, the wave function 
 belongs to the energy eigenvalue E and 	2
N and VN stand

for the N -dimensional Laplacian and potential respectively. Investigation of physical pro-
cesses based on eq. (11) is a well-studied problem and many authors proceed by using the
standard central potential V (r) in place of VN . Here r represents the N -dimensional radius
(
∑N

i x2
i )1/2. Going over to a spherical coordinate system with N − 1 angular variables and

one radial coordinate we can write


 = ψ
(N )
n,l Y M

l (θi ), (12)

where Y M
l (·) represents contributions from the hyperspherical harmonics that arise in

higher dimensions. The eigenvalues and eigenfunctions for generalized angular momen-
tum operators in N -dimensional polar coordinates are determined [33] using the results
known from the factorization method [34]. However, from eqs (11) and (12) we have lth
partial-wave radial Schrödinger equation

d2ψ
(N )
n,l

dr2
+ N − 1

r

dψ
(N )
n,l

dr
+ 2m

h̄2

(
E (N )

n,l − V (r) − h̄2

2m

l(l + N − 2)

r2

)
ψ

(N )
n,l = 0.

(13)
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Here, the superscript (N ) on the radial function ψ
(N )
n,l and the energy eigenvalue E (N )

n,l
merely stand for the dimensionality of the problem and the subscript n refers to a quan-
tum number, the interpretation of which depends on the choice of V (r). Introducing a new
function

R(N )
n,l (r) = r (N−1)/2ψ

(N )
n,l (r),

eq. (13) takes the form

d2 R(N )
n,l (r)

dr2
+ 2m

h̄2

(
E (N )

n,l − Veff(r)
)
R(N )

n,l (r) = 0 (14)

where the effective potential

Veff(r) = V (r) + h̄2

2m

l(l + N − 2)

r2
= V (r) + Vl(r) .

4. Pekeris approximation and Nikiforov–Uvarov method for approximate
solutions of the Wei Hua oscillators

For Wei Hua oscillator, the Schrödinger equation can be solved for the s-wave, i.e., for the
angular momentum quantum number l = 0 only. However, for the general solution, one
needs to include the Pekeris approximation to obtain analytical solutions to the Schrödinger
equation. Also, it is often necessary to determine the l-wave solutions. The approximation
is based on the expansion of the centrifugal barrier in a series exponentials depending on
the nuclear distance, until the second order. By construction, this approximation is valid
only for lower vibrational energy states. Therefore, for a Pekeris approximation, we can
take care of the rotational term in the following way.

By changing the coordinates

x = r − r0

r0
, (15)

the centrifugal potential is expanded in the Taylor series around the point x = 0(r = r0)

Vl = h̄2

2m

l(l + N − 2)

r2
= γ (1 + x)−2 = γ (1 − 2x + 3x2 − 4x3 + · · · ) (16)

and we define an equivalent potential such that

Ṽl = γ (D0 + D1 f1(x) + D2 f2(x) + · · · ), (17)

where f1(x), f2(x), ... are functional forms of the potential and

γ = h̄2

2m

l(l + N − 2)

r2
0

. (18)

According to Pekeris approximation

Vl = Ṽl (19)

and the constants D0, D1 and D2 are determined by comparing equal powers of x of eqs
(16) and (17). Now we take the potential Ṽl instead of the true rotational potential Vl and
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solve the Schrödinger equation for l �= 0 in eq. (14) with the effective potential after
Pekeris approximation

Veff(r) = V (r) + Ṽl(r). (20)

Now we shall apply the NU method to find the approximate solutions of Schrödinger
equation for the Wei Hua oscillator [28]

V (r) = D

(
1 − exp(−c1(r − r0))

1 − a exp(−c1(r − r0))

)2

, (21)

which gives description of anharmonic vibrations of diatomic molecules and where only
s-wave bound state solutions are possible/available. Here, D represents the dissociation
energy of the system. With the dimensionless coordinate x = (r − r0)/r0, α = c1r0 and
according to the Pekeris approximation, we replace the potential Vl with the expression

Vl = Ṽl = γ

(
D0 + D1

(
1 − exp(−αx)

1 − a exp(−αx))

)2)
. (22)

Comparing equal power of x up to the second order from eqs (16) and (22), we obtain the
constants

D0 = 1, D1 = 3

α2(1 + 2a + 3a2)
. (23)

Now taking the potential Ṽl instead of the true rotational potential Vl , eq. (14) takes the
following form for the Wei Hue oscillator:

d2 R(N )
n,l (x)

dr2
+ 2m

h̄2

(
(E (N )

nl −γD0)−(V0+γD1)

(
1 − exp(−αx)

1 − a exp(−αx)

)2)
R(N )

n,l (x) = 0.

(24)

With the dimensionless coordinate s = ae−αx , one can rewrite eq. (24) as

d2 R(N )
n,l (s)

ds2
+ (1 − s)

s(1 − s)

dR(N )
n,l (s)

ds
+ 1

s2(1 − s)2

(− c2
0 + c2s2 − c3s

)
R(N )

n,l (s) = 0,

(25)

which is a hypergeometric-type equation. Here, the dimensional parameters are

−c0 = 2m

h̄2α2

(
E (N )

n,l − γD0 − V0 − γD1
)
, (26)

.

c2 = 2m

h̄2α2

(
E (N )

n,l − γ D0 − 1

a2
(V0 + γD1)

)
(27)

and

c3 = 2m

h̄2α2

(
E (N )

n,l − γ D0 − 1

a
(V0 + γ D1)

)
. (28)

After comparing eq. (25) with eq. (1), we obtain the corresponding polynomials as

τ̃ (s) = 1 − s, σ (s) = s(1 − s), σ̃ (s) = −c2
0 − c3s + c2s2. (29)
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Substituting these polynomials into eq. (7), we obtain π(s) as

π(s) = − s

2
±

√
s2

(
1

4
− c2 − k

)
+ (k + c3)s + c2

0. (30)

The discriminant of the above expression under the square root has to be zero. Hence,
the expression becomes the square of a polynomial of first degree. When the required
arrangements are done with respect to the constant k, its double roots are derived as

k± = −c3 − 2c2
0 ± 2c0

(
1

A
− 1

2

)
, (31)

where

1

A
− 1

2
=

√
2m(V0 + γD1)

h̄2α2

(
1

a
− 1

)2

+ 1

4
. (32)

Substituting k− into eq. (30), the following possible solution is obtained for π(s) as

π−(s) = c0(1 − s) − s

A
. (33)

It is clearly seen that the eigenvalues are found with a comparison of eqs (8) and (9). We
select the polynomial π−(s) for which the function τ(s) in eq. (10) has a negative derivative.
Therefore, the function τ(s) satisfies these requirements, with

τ(s) = 1 − s − 2

(
c0 + 1

A

)
s + 2c0. (34)

From eqs (8) and (9), we get

λ = 2
2m(V0 + γD1)

h̄2α2

(
1

a
− 1

)
− 2c0

A
− 1

A
(35)

and also

λ = λn = n

(
n + 2

A

)
+ 2nc0. (36)

From eqs (35) and (36), we get quantized eigenvalue as

E (N )
n,l = V0 + l(l + N − 1)

r2
0

(
1 + 3

α2(1 + 2a + 3a2)

)

−α2 h̄2

2m

(n(n + 2
A ) + 1

A − 2 2m
h̄2

(
V0
α2 + 3γ

α4(1+2a+3a2)

)(
1
a − 1

)
2
(
n + 1

A

) )2

.

(37)

If we take the limit l = 0 in N = 3 dimensional space, we obtain the s-wave result.
Let us now find the corresponding eigenfunctions for this potential. Due to the NU-

method, the polynomial solutions of the hypergeometric function y(s) depend on the
determination of the weight function ρ(s) which is calculated as

ρ(s) = s2c0(1 − s)(2/A)−1. (38)
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Substituting into the Roddigues relation given in eq. (6), the eigenfunctions are obtained in
the following form:

yn(s) = Bns−2c0(1 − s)−( 2
A −1) dn

dsn

(
sn+2c0(1 − s)n+(2/A)−1), (39)

where Bn is the normalization constant. The polynomial solutions of yn(s) in eq. (39) are
expressed in terms of the Jacobi polynomials as

yn(s) = Bnn!P2c0,(2/A)−1
n (1 − 2s). (40)

By substituting π−(s) and σ(s) into eq. (5) and solving the differential equation, the other
part of the wave function is found as

φn(s) = sc0(1 − s)1/A. (41)

Combining the Jacobi polynomials and φn(s), we get wave functions as

R(N )
n,l (s) = Ansc0(1 − s)1/A P2c0,(2/A)−1

n (1 − 2s), (42)

where An is the normalization constant.
To compute the normalization constant An , it is easy to show using ψ

(N )
nl (r) =

r−(N−1)/2 R(N )
nl (r) that

∫ ∞

0
|ψ(N )

nl (r)|2r N−1dr =
∫ ∞

r0

|R(N )
nl (r)|2dr = 1

c1

∫ 1

0
|R(N )

nl (s)|2 ds

s
= 1, (43)

where we have also used the substitution s = ae−c1(r−r0). Putting eq. (42) into eq. (39) and
using the following definition of the Jacobi polynomial [35]

P (a,b)
n (x) = �(n + a + 1)

n!�(1 + a)
2 F1

(
− n, a + b + n + 1; 1 + a; 1 − x

2

)
, (44)

we arrived at

A2
n

(
�(n + 2c0 + 1)

n!�(1 + 2c0)

)2 ∫ 1

0
s2c0−1(1 − s)2/A

×
(

2 F1

(
− n, 2c0 + 2

A
+ n; 1 + 2c0; s

))2

ds = c1, (45)

where F is the hypergeometric function. Using the following series representation of the
hypergeometric function

p Fq(a1, a2, ...; b1, b2, ....; s) =
∞∑

n=0

(a1)n....(ap)n

(b1)n....(bq)n

sn

n! (46)
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we have

A2
n

(
�(n + 2c0 + 1)

n!�(1 + 2c0)

)2 n∑
k=0

n∑
j=0

(−n)k(n + 2c0 + 2
A )k

k!(1 + 2c0)k

× (−n) j (n + 2c0 + 2
A )j

j !(1 + 2c0)j

∫ 1

0
s2c0+k+ j−1(1 − s)2/Ads = c1. (47)

Hence, by the definition of the beta function, eq. (47) becomes

A2
n

(
�(n + 2c0 + 1)

n!�(1 + 2c0)

)2 n∑
k=0

n∑
j=0

(−n)k(n + 2c0 + 2
A )k

k!(1 + 2c0)k

× (−n)j (n + 2c0 + 2
A )j

j !(1 + 2c0)j
B

(
2c0 + k + j,

2

A
+ 1

)
= c1. (48)

Using the relation B(x, y) = �(x)�(y)/�(x + y) and the Pochhammer symbol (a)n =
�(a + n)/�(a), eq. (48) can be written as

A2
n

(
�(n + 2c0 + 1)

n!�(1 + 2c0)

)2 n∑
k=0

(−n)k(2c0)k(n + 2c0 + 2
A )k

(1 + 2c0 + 2
A )kk!(1 + 2c0)k

×
n∑

j=0

(−n)j (2c0 + k)j (n + 2c0 + 2
A )j

(1 + 2c0 + 2
A + k)j j !(1 + 2c0)j

= c1

B
(
2c0,

2
A + 1

) . (49)

Equation (49) can be used to compute the normalization constants for n = 0, 1, 2, .... In
particular for the ground state, n = 0, we have

A0 =
√

c1

B
(
2c0,

2
A + 1

) . (50)

5. Conclusion

In this paper, we obtain the approximate solutions of the N -dimensional Schrödinger
equation for Wei Hua oscillator, within the framework of Pekeris approximation to the
centrifugal term. For solving the N -dimensional Schrödinger equation, the NU method has
been used to obtain the energy eigenvalues and eigenfunctions. The energy eigenvalues
obtained has been found to agree with the three-dimensional case when N = 3. It is impor-
tant to note that the approximation is valid only for small values of the screening parameter
c1 of the Wei Hue oscillator. Hence, the results obtained are parameter-dependent.
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