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Schwarzian derivative as a proof of the chaotic behaviour
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Abstract. In recent years, a sufficient condition for determining chaotic behaviours of the non-
linear systems has been characterized by the negative Schwarzian derivative (Hacibekiroglu et al,
Nonlinear Anal.: Real World Appl. 10, 1270 (2009)). In this work, the Schwarzian derivative
has been calculated for investigating the quantum chaotic transition points in the high-temperature
superconducting frame of reference, which is known as a nonlinear dynamical system that displays
some macroscopic quantum effects. In our previous works, two quantum chaotic transition points
of the critical transition temperature, 7, and paramagnetic Meissner transition temperature, Tpmg,
have been phenomenologically predicted for the mercury-based high-temperature superconductors
(Onbash et al, Chaos, Solitons and Fractals 42, 1980 (2009); Aslan et al, J. Phys.: Conf. Ser. 153,
012002 (2009); Cataltepe, Superconductor (Sciyo Company, India, 2010)). The Tt, at which the
one-dimensional global gauge symmetry is spontaneously broken, refers to the second-order phase
transition, whereas the TpmE, at which time reversal symmetry is broken, indicates the change in
the direction of orbital current in the system (Onbash er al, Chaos, Solitons and Fractals 42, 1980
(2009)). In this context, the chaotic behaviour of the mercury-based high-temperature superconduc-
tors has been investigated by means of the Schwarzian derivative of the magnetic moment versus
temperature. In all calculations, the Schwarzian derivatives have been found to be negative at both 7¢
and Tpmg which are in agreement with the chaotic behaviour of the system.

Keywords. Mercury cuprate superconductors; nonlinear dynamics and chaotic behaviour; Schwarzian
derivative; paramagnetic Meissner effect.
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1. Introduction

By displaying some macroscopic quantum effects such as Josephson effect, magnetic flux
quantization and time dilatation effect, the superconductivity plays an important role in
establishing nonlinear quantum theory. Superconductors as nonlinear dynamical systems
also constitute a natural frame of reference to observe the quantum chaotic transitions
which emanate themselves as spontaneous symmetry breakings due to nonlinear interac-
tions within the system [1,2]. The concept of symmetry breakings in superconductors,
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especially in mercury-based high-temperature superconductors, was discussed by means
of chaotic behaviour (i.e. chaotic transitions) in detail in our previous works [3-5]. More-
over, solitons, which are accepted as a universal concept in nonlinear science, had also
been previously predicted in the mercury-based high-temperature superconductors [3]. As
is known, solitons can be found in a Josephson junction, where two superconductors are
separated by a thin insulating layer [6]. The copper oxide layered mercury cuprate super-
conducting system has an intrinsic Josephson junction structure, as well. Furthermore,
there have been various studies about dynamical chaos in long Josephson junctions since
1982. The role of the phase of quantum wave function in long Josephson junction is con-
sidered as dynamical chaos that is described by nonlinear sine-Gordon equation [7-12].
For these reasons, one has the right to consider a high-temperature mercury cuprate super-
conductor, for which electron—phonon interactions are strong and nonlinear [13] and which
displays intrinsic Josephson effect, as a nonlinear dynamical system. In this point of view,
determining the Schwarzian derivative is a convenient mathematical method to investigate
the chaotic behaviours in such nonlinear dynamical condensed matter systems.

According to our previous works [3—5], mercury-based high-temperature superconduc-
tors exhibit two quantum chaotic transitions: at the critical transition temperature (7;),
and at paramagnetic Meissner transition temperature (7pmg). Hence, this work is devoted
to establish the mathematical determination of the chaotic behaviours in mercury cuprate
high-temperature superconductors by determining the Schwarzian derivative. For this pur-
pose, the following sections are focussed on the main features of the superconducting state
by means of chaotic transitions and the Schwarzian derivative for deciding the chaotic
behaviours in superconductors.

2. Chaos and superconductivity

The combination of the concepts of chaos and superconductivity produces an interesting
phenomenon for almost 30 years. In this section, we shall be focussing on both chaos and
superconductivity phenomena and their interesting relation.

The concept of chaos in science is something different from the concept in common
usage. The centre of chaos theory is the discovery of the unpredictable behaviour of sys-
tems in long terms that have strong relation between long-range order and structure. In this
context, ‘chaos’ refers not to true randomness but to the orderly disorder characteristics of
these systems. In other words, the main aim of the science of chaos is to comprehend this
unusual complex attitude of such systems via mathematics [14].

Superconductivity itself is a natural consequence of ‘macroscopic quantum effect’. As
is known, macroscopic quantum effects result from the collective behaviour of quantum
particles in such a way that all entities condense into the same state of being. In this context,
superconductivity emanates from the collective motion of a huge number of harmonized
electron pairs with zero spin and momentum (i.e. bosons) at low temperatures resulting in a
coherent and highly long-range ordered state. In other words, in the superconducting state,
fermionic electrons are unexpectedly paired by rearrangement of their spins via phonons
that results in bosonic quasiparticles. As was previously stated by some scientists as well
as Protogenov and Ryndyk from International Centre for Theoretical Physics in Trieste,
“The transition from the superconducting state to the normal state is accompanied by the
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propagation of a quantum chaos from one cell to the whole space and corresponds to the
transition into the confinement phase of spin-wave excitation sources. The formation of this
rigid coherent system of quantum braids manifests itself in the character of the spectrum of
quasiparticle’s collective motions. It has a finite gap in the long wave limit and is almost
dispersionless’ [15]. Moreover, the microscopic origin of chaos is related to the appearance
of an excitation gap in the superconducting state. The occurrence of an excitation gap in
superconductors is accepted as a signature of quantum chaos [16,17].

The condensation of electron pairs into a single quantum state in the superconducting
phase, the so called as Bose—FEinstein condensation (BEC), occurs at a specific temper-
ature, known as critical transition temperature (7;), at which the gap appears above the
Fermi level. The critical transition temperature also marks a second-order phase transition
which manifests itself as a discontinuity of the third derivative of thermodynamic func-
tion of the system [1]. The experimental output of this discontinuity is clearly observed
in both resistance vs. temperature and specific heat vs. temperature data. In the picture
of chaos, the superconducting transition is considered as chaotic transition because of all
these reasons previously mentioned in this section.

Furthermore, the essence of chaos is directly related to the transition from one state to
another where the probability density of the system changes with temperature [18]. In other
words, one of the most characteristic features of the chaotic behaviour of the systems is the
strong dependence of system’s states on the changes in its parameters. The state of the
system changes with only small variations in some parameters of the system such as tem-
perature [19]. In this context, the probability distribution function of the superconducting
system experiences a transition from Fermi—Dirac (FD) to Bose—Einstein (BE) due to small
variation in temperature at 7. [5]. Moreover, the one-dimensional global gauge symmetry
is broken together with the order parameter at 7. due to the off-diagonal long-range order
[20]. This unexpected transition at T is detected on the magnetic data of the system. Based
on the relevant literature, the transition from zero magnetic moment state to diamagnetic
state at T,, which is the main feature of superconductivity, is named as ‘chaotic’. The
mathematical interpretation of this chaotic behaviour at 7, is represented by the concept
of change of probability density. Although the temperature parameter is the main driv-
ing force for this kind of chaotic transition, it has been understood that various parameters
and the initial conditions such as crystallographic structure, oxygen content, purity (lack
of impurities) etc. have crucial role in the transition from FD to BE. This means that the
dynamical chaos can be controlled precisely by some advanced laboratory workings.

In this context, the critical transition temperature (7;) is considered as the first chaotic
point that is experimentally determined by resistance vs. temperature, magnetic moment
vs. temperature and specific heat vs. temperature curves. In this work, the critical tran-
sition temperature was determined by the real component of the magnetic moment vs.
temperature data. As is known, at T, the real component of the magnetic moment goes to
Zero.

The second quantum chaotic transition point is the paramagnetic Meissner transition
temperature (7pyp) at which the orbital current of the system changes its direction. More-
over, it has been previously determined that the concept of time reversal symmetry breaking
becomes detectable on paramagnetic Meissner effect (PME) at Tpyg by observing the
change of direction of orbital current [3-5]. In the PME, in contrast to the fundamen-
tal diamagnetic response of superconductors to external magnetic field, superconductors
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acquire a net positive magnetic moment when they are cooled in very weak magnetic
fields of the order of 1 G. The PME can be observed on both DC (direct current) and AC
(alternative current) magnetic moment vs. temperature data of some very cleanly prepared
high-temperature superconductors such as mercury cuprate superconductors. In this work,
we shall focus on the AC magnetic moment vs. temperature data of HgBa,Ca,Cu30g.,
(Hg-1223) superconductors.

Hg-1223 superconductors are very special because these have the highest critical transi-
tion temperature at normal atmospheric pressure [3,21]. The new world record of critical
transition temperature of 7. = 140 K has also been observed in the optimally oxygen-
doped Hg-1223 superconductors [3]. Mercury cuprate superconductors also exhibit PME
as shown in figures 1 and 2. PME manifests itself as the maximum positive magnetic
moment signal at Tpyg on the imaginary component of the magnetic moment vs. temper-
ature data illustrated in figures 1 and 2. The AC magnetic moment vs. temperature curves
was obtained by Quantun Design MPMS-5S model superconducting quantum interference
device (SQUID).

The magnetic moment vs. temperature curves shown in figures 1 and 2 belong to the
same batch of optimally oxygen-doped mercury cuprate superconductors. The main dif-
ference between the samples is their geometry. Figure 1 refers to the uncut, i.e. random
shaped sample, whereas figure 2 corresponds to the cut, i.e. rectangular shaped optimally
oxygen-doped HgBa,;Ca,;Cu30s,., superconductors. Since the PME is the intrinsic feature
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Figure 1. The real and imaginary components of the magnetic moment of the optimally
oxygen-doped mercury cuprate superconductor, HgBa;CayCu3zOg4,. The imaginary
part of the magnetic moment has a maximum at 7ppmg = 122 K. The inset shows critical
transition temperature, 7. = 140 K via real component of the magnetic moment of the
system.
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Figure 2. The real and imaginary components of the magnetic moment of the opti-
mally oxygen-doped and cut mercury cuprate superconductor, HgBayCa;CuzOg .
The imaginary part of the magnetic moment has a maximum at 7pmg = 116.1 K.
The inset shows critical transition temperature, 7. = 137 K via real component of the
magnetic moment of the system.

of the mercury cuprates, PME has been observed on both samples but it has been observed
that cutting process lowers both 7, and Tpyg.

According to figures 1 and 2, the imaginary component of the magnetic moment
(Mimaginary (7)) has a critical point at Tpme and mimaginary (T) increases for T < TpyE,
whereas mimaginary (T') decreases for T > Tpypg.

3. The Schwarzian derivative for determining the chaotic behaviours
in superconductors

One of the most crucial intrinsic properties of the chaotic systems is that the state of the
system can be affected by small variations of its parameters. For instance, small changes
in temperature parameter at 7, in the superconducting chaotic system manifest itself as
an occurrence of the transition from Fermi-Dirac to Bose-Einstein distribution function.
From this point of view, small variations in parameters in the condensed matter media,
which display chaotic behaviour, can be investigated by means of derivative process, since
the derivative of a function represents an infinitesimal change in the function with respect
to one of its variables. So the derivative process is the most appropriate mathematical tool
to detect chaotic behaviours. In this context, the Schwarzian derivative method has been
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utilized to find a sufficient condition for the chaotic behaviours of nonlinear dynamical
systems [22].

The Schwarzian derivative Sf(x) of a locally univalent analytic function f at point x, is
defined by

1" / " 2
Sf(x):<f,(x)> _1(f (x)) | 0
VANEY) 2\ f ™

where f(x) is a function with one variable and f’(x) and f”(x) are its first and sec-
ond continuous derivatives, respectively. The Schwarzian derivative is named after the
German mathematician Hermann Schwarz who studied complex valued functions, but it
was used for hypergeometric differential equations by Kummer in 1836 [23]. Moreover,
Schwarzian derivative is invariant under linear fractional transformations (7), i.e. M&bius
transformation given by eq. (2).

S(To f)=Sf. 2)
This means that Schwarzian derivative of any linear fractional transformation is zero

[24,25]. In particular, Mobius transformation is the only function that satisfies the condition
defined by

S(f)=0. 3)

Although Mobius transformations are utilized for mapping in geometry, they have many
applications that cover different disciplines in science from neuroscience to relativity the-
ory. The fundamental Md6bius transformations cover translation, inversion, and rotation
operations as well as dilation effect. In our previous works, it has been determined that
the superconducting system is invariant under both translation and inversion operations
[3]. The long-range order and the tetragonal P/4 mmm lattice structure of the system
enable invariance under these transformations. Moreover, the dilation effect in time man-
ifests itself as the shift of plasma resonance frequency with respect to small variations in
temperature [26-28]. From this point of view, superconducting system can be considered
as a natural laboratory of mathematics that reflects some general properties of invariant
Schwarzian derivative under Mobius transformations, as well.

In 1980s, the Schwarzian derivative was used for limiting the behaviour of dynamical
systems [29,30]. According to Katz [31] and Hacibekiroglu et al [22], when the sys-
tem behaves chaotically, the Schwarzian derivative of the function is negative. Moreover,
the eventual negative Schwarzian derivative has also been utilized for searching chaotic
behaviours in neuroscience, especially explaining the electrical activity in neural cells, a
behaviour described as ‘bursting’ [32,33].

To investigate the chaotic behaviours in mercury cuprates, the Schwarzian derivatives
of both the real and imaginary components of the magnetic moment of Hg-1223 super-
conductors, S[mea(T)] and S[Mimaginary (1)], have been calculated by eqs (4) and (5),
respectively.

mreal(T)W 3 (mreal(T)”>2
S e ()] = el 3 (eall) ) - 4
[ (T)] mreal(T)/ 2 mreal(T)/ @
Mimaginary(T)" 3 ( Mimaginary (7))
Sl (0] = =25 ()
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the magnetic moment with respect to temperature.

To calculate S[meq (T)] and S[m;imaginary (1)1, the first-, second- and third-order deriva-
tives of the components of the magnetic moments have been taken. The variations of the
related derivatives with temperature for the optimally oxygen-doped sample are shown in

figures 3a and 3b.
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Figure 3. The variation of the first-, second- and third-order derivatives of (a) the real
and (b) the imaginary components of the magnetic moment with temperature for the

optimally oxygen-doped sample.
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Figure 4. The Schwarzian derivative of the real component of the magnetic moment of
the optimally oxygen-doped mercury cuprate superconductor, HgBayCayCu3zOg .

The Schwarzian derivatives of the real and imaginary components of the magnetic
moment of the optimally oxygen-doped mercury cuprates with 7, = 140 K and Tpmg =
122 K are given in figures 4 and 5, respectively.

The Schwarzian derivatives of the real and imaginary components of the magnetic
moment of the optimally oxygen-doped and cut mercury cuprates with 7, = 137 K and
Tpme = 116 K are given in figures 6 and 7, respectively.

4. Discussions

In this work, the chaotic behaviours of the mercury cuprate superconducting system have
been investigated by calculating the Schwarzian derivatives. The investigation was realized
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Figure 5. The Schwarzian derivative of the imaginary component of the mag-
netic moment of the optimally oxygen-doped mercury cuprate superconductor,
HgBa;CayCuzOg .
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Figure 6. The Schwarzian derivative of the real component of the magnetic
moment of the optimally oxygen-doped and cut mercury cuprate superconductor,
HgBayCapCuzOgy.

on two mercury cuprate superconducting systems which have different geometric shapes.
Regardless of the geometry of the superconducting samples, the chaotic behaviours at
both T, and Tpyp manifest themselves as the emergence of negativity in the Schwarzian
derivatives of the real and imaginary parts of the magnetic moment data. Moreover, the
second chaotic point (Tpyvg) always reveals itself as the more sharp and distinct negative
Schwarzian derivative peak than the first chaotic point (7;) as shown in figures 5 and 7. Fur-
thermore, a remarkable point in figures 5 and 7 is that some distinct negative Schwarzian
derivative peaks have been determined between T, and Tpyg on both samples. While three
distinct negative Schwarzian derivative peaks can be observed at 130 K, 134 K and approx-
imately 138 K for the optimally oxygen-doped sample, only one negative and sharp peak
can be seen at about 130 K for the optimally oxygen-doped and cut sample (figures 5 and 7).
In this point of view, it can be deduced that the cutting process, that enables us to rearrange
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Figure 7. The Schwarzian derivative of the imaginary component of the magnetic
moment of the optimally oxygen-doped and cut mercury cuprate superconductor,
HgBa;CayCuzOg .
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the geometry of the sample as a parameter, also decreases the chaotic fluctuations between
T, and Tppg in the system. On the other hand, it is understood that no matter what param-
eters such as geometry, oxygen doping process etc., are changed, the chaotic behaviour
always appears in the system which is proved by negative Schwarzian derivative peaks.
Furthermore, a considerably large number of temperature points that satisfy the conditions
are given below.

S [Mmea (T)] =0

S [mimaginary (T)] =0

From this point of view, it is concluded that the system is also invariant under linear
fractional transformations, namely Mobius transformations.

5. Conclusions

In this paper, the Schwarzian derivative method, which is utilized for predicting the
chaotic behaviours mathematically in nonlinear dynamical systems, was applied to a high-
temperature superconducting condensed matter system for determining the chaotic points
which were previously predicted phenomenologically. Moreover, it is proved that the sys-
tem is invariant under translation and inversion operations and exhibits the time dilation
effect by determining the points at which the Schwarzian derivative is zero. Hence, in this
work the fact that chaos represents the order of disorder in long range has been determined
by Schwarzian derivative method.

As result of the mathematical study, it has been proposed that the Schwarzian derivative
is a convenient mathematical method for precise prediction of chaotic points in nonlinear
superconducting condensed matter systems as well.
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