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Thermal conductivity of nonlinear waves
in disordered chains
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Abstract. We present computational data on the thermal conductivity of nonlinear waves in disor-
dered chains. Disorder induces Anderson localization for linear waves and results in a vanishing con-
ductivity. Cubic nonlinearity restores normal conductivity, but with a strongly temperature-dependent
conductivity κ(T ). We find indications for an asymptotic low-temperature κ ∼ T 4 and intermedi-
ate temperature κ ∼ T 2 laws. These findings are in accord with theoretical studies of wave packet
spreading, where a regime of strong chaos is found to be intermediate, followed by an asymptotic
regime of weak chaos (Laptyeva et al, Europhys. Lett. 91, 30001 (2010)).
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1. Introduction

In the absence of nonlinearity (or many-body interactions in quantum systems), all eigen-
states – normal modes (NM) – in one-dimensional random lattices with disorder are
spatially localized. This is Anderson localization [1], which was discovered 50 years ago
in disordered crystals as a localization of electronic wave functions. It can be interpreted as
an interference effect between multiple scattering events of the electron and random defects
of the potential. Recent experiments on the observation of Anderson localization were per-
formed with light propagation in spatially random optical media [2,3], with noninteracting
Bose–Einstein condensates expanding in random optical potentials [4,5], and with wave
localization in a microwave cavity filled with randomly distributed scatterers [6].

In many situations, nonlinear terms in the wave equations (respectively, many-body inter-
action terms in quantum systems) have to be included. Thus, a fundamental question which
has attracted the attention of many researchers is: what happens to an initial excitation of
arbitrary shape in a nonlinear disordered lattice. Nonlinearity renormalizes excitation fre-
quencies, and induces interactions between NMs. Numerical studies show that wave pack-
ets spread subdiffusively and Anderson localization is destroyed [7–10]. In the regime of
strong nonlinearity, far from where it can be treated perturbatively, new localization effects
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of self-trapping occur [11]. A theoretical explanation of the subdiffusive spreading was
offered in refs [7,9,12]. It is based on the fact that the considered models are in general non-
integrable. Therefore deterministic chaos will lead to an incoherent spreading. Estimates
of the excitation transfer rate across the packet tail are obtained by calculating proba-
bilities of mode–mode resonances inside the packet. Some predictions of this approach
include the effect of different degrees of nonlinearity and were successfully tested in [13].
First experimental data were recently presented for repulsively interacting Bose–Einstein
condensates in quasiperiodic potentials [14,15] which, among others, confirm the basic
theoretical findings.

While the above wave packets are spreading into an ‘empty’ system, another set of re-
lated problems concerns the thermal conductivity at finite temperature T (i.e. at finite
energy density ε ∼ T ) [16,17]. In the absence of nonlinearity, Anderson localization of
NMs leads to a vanishing conductivity. It was observed that even a small amount of anhar-
monicity leads to a diffusive transport of energy, and a finite thermal conductivity κ [18].
Some numerical studies indicated that for low temperatures κ ∼ T 1/2 [18] which would
indicate a singularity at zero temperatures. Other expectations claim that heat conductivity
vanishes strictly for weak enough (but still finite) anharmonicity [17].

In this report we use the theoretical results on wave packet spreading and derive a con-
nection between κ and T . We predict that for low temperatures κ ∼ T 4 which corresponds
to the regime of weak chaos. At higher temperatures an optional intermediate regime of
strong chaos may lead to κ ∼ T 2. We perform numerical simulations which indicate that
our predictions are plausible.

2. Models

We study two different Hamiltonian models. The first model describes interacting anhar-
monic oscillators in a quartic Klein–Gordon (KG) chain, given as

HK =
∑

l

p2
l
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+ ε̃l

2
u2

l + 1

4
u4

l + 1

2W
(ul+1 − ul)

2, (1)

where ul and pl are respectively the generalized coordinate/momentum on the site l, and ε̃l

are the disordered potential strengths chosen uniformly in the interval [1/2, 3/2]. Likewise,
∂2

t ul = −∂HK /∂ul generates the equations of motion

ül = −ε̃lul − u3
l + 1

W
(ul+1 + ul−1 − 2ul). (2)

By neglecting the nonlinear terms, the KG model (1) reduces to a linear eigenvalue
problem. This leads to a set of NM amplitudes, Aν,l , with NM squared frequencies ω2

ν ∈
[1/2, 3/2 + 4/W ] and � = 1 + 4/W being the width of the squared eigenfrequency
spectrum. The NM asymptotic spatial decay is given by Aν,l ∼ e−l/ξ(ω2

ν ) where ξ(ω2
ν) is

the localization length. It is approximated [19] in the limit of weak disorder (W � 1) as
ξ(ω2

ν) ≤ 96W −2. The NM participation number Pν = 1/
∑

l A4
ν,l characterizes the NM

spatial extent. An average measure of this extent is the localization volume V , which is on
the order of 3.3ξ(0) for weak disorder and unity in the limit of strong disorder [20]. The
average squared frequency spacing of NMs within a localization volume is then d ≈ �/V .
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The two squared frequency scales d and � with d < � are thus expected to determine the
dynamics details in the presence of nonlinearity.

Nonlinearity induces an interaction between NMs. Since all NMs are exponentially
localized in space, each of them is effectively coupled to a finite number of neighbour
modes, i.e. the interaction range is finite. However, the strength of this coupling is propor-
tional to the characteristic energy density, ε. The squared frequency shift due to the non-
linearity is then δ ∼ ε.

The KG model is suitable for studies of the dynamics for weak and intermediate disor-
der W < 20, since otherwise the coupling strength between nearest-neighbour oscillators
becomes too weak and the required computation times too long. In the limit of strong disor-
der, the NMs become localized on a single site, and will be coupled by nonlinearity to their
nearest neighbour. Therefore this limit can be modelled by a chain of harmonic oscillators
with random frequencies and purely anharmonic nearest-neighbour coupling:

HFSW =
∑

l

p2
l

2
+ ε̃l

2
u2

l + 1

4
(ul+1 − ul)

4 (3)

which is an example from a class of models studied by Fröhlich, Spencer and Wayne [21]
and therefore called here as the FSW model. It follows qualitatively from the KG model
by first transforming into NM space, dropping secular terms [12], and finally through the
limits of strong disorder, and of high temperatures (energies). Its quartic potential part
however is invariant under homogeneous coordinate shifts, contrary to the KG case.

3. Thermal conductivity

The thermal conductivity is measured by a standard approach, when the thermal baths
attached to the ends generate a temperature gradient and heat current along the chain [16].
For the KG model we implement Langevin thermostats with two next-to-end atoms cou-
pled to Langevin heat baths with ü1,N = −∂ H/∂u1,N + ξ1,N − λu̇1,N with white noise〈
ξ1,N

〉 = 0 and
〈
ξ1,N (t)ξ1,N (0)

〉 = 2λT1,N δ(t) where 〈·〉 denotes ensemble averages. T is
the temperature, and λ denotes the coupling strength between the system and the heat bath.
For the FSW model we use Nosé–Hoover thermostats adding the terms −ζ±u̇1,N to the
respective equations of motion, where ζ̇± = u̇2

1,N /T1,N − 1.
For the KG model the heat flux along the chain is defined as the time average of jKG =

−(1/2W )
∑

l(u̇l+1 + u̇l)(ul+1 −ul) [16]. For the FSW model the heat flux follows from the
time average of jFSW = − 1

2

∑
l(u̇l+1 + u̇l)(ul+1 − ul)

3 [16]. Then the thermal conductivity
coefficient κ = j N/(TN − T1) [16]. We use the mean temperature T = (TN + T1)/2 as
a parameter corresponding to the energy density 〈ε〉 = T, and (TN − T1)/T = 0.5 fur-
ther on.

4. Predictions

The numerical evolution of a wave packet spreading into an empty system [7–10] yields
subdiffusive growth of the second moment. This implies that the diffusion rate is depend-
ing on the energy density (temperature). A theoretical approach [7,9,12] postulates that
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the wave packet evolves chaotically, and estimates the diffusion rate for the KG model
to be [12]

D ∼ ε2P2(ε) (4)

with the resonance probability [20]

P(ε) ≈ 1 − e−aε/d (5)

a being an unknown constant of order one.
For small temperatures ε ∼ T . Therefore, and assuming that the thermal conductivity is

proportional to the diffusion rate [10], we conclude that for the KG model

κ ∼ T 2
(
1 − e−bT/d

)2
(6)

with b another constant of order one. In particular, we find that

κ ∼ T 4 , T � d (weak chaos), (7)

κ ∼ T 2 , T � d (strong chaos). (8)

Note that for larger energy densities (temperatures) the KG model enters the regime of
self-trapping, and the above predictions do not apply anymore. The self-trapping regime is
expected when ε ∼ T ≈ 2/(3W ) [10]. It is the asymptotic high-temperature limit of the
KG model, where the thermal conductivity should drop with increasing temperature [17].
Thus, depending on the strength of disorder, we expect that the thermal conductivity grows
with temperature as T 4, then (for not too strong disorder) it grows as T 2, and finally goes
through a maximum and starts to decrease with further increase of temperature. The three
phases are summarized in the inset of figure 3 in ref. [10].

The application of the above approach to the FSW model leads to d ∼ 1 and to the
absence of a self-trapped regime. Instead, for large temperatures, the leading order anhar-
monic potential terms of the FSW model bring it close to the momentum conserving
β-Fermi–Pasta–Ulam chain (FPU). The FPU chain has a thermal conductivity which
diverges with increasing system size [16]. Therefore, κ will increase with system size also
for the FSW model for large temperatures, until the harmonic oscillator potential parts can-
not be neglected anymore, leading to a final saturation of the thermal conductivity with a
further increase in system size. Indeed, the harmonic oscillator potential parts are violating
total momentum conservation, and therefore the thermal conductivity stays finite for large
enough system size [10,17]. Since the momentum conserving terms of the FSW model
become more dominant at larger temperatures, it follows that the higher the temperature,
the larger the system sizes needed, and the larger the saturated conductivity value. The
cross-over to this pseudo-FPU regime can be expected when the temperature is of order
unity (since all relevant FSW model parameters are of order unity). Therefore, we con-
clude that we shall not see a pronounced regime of strong chaos, instead the regime of
weak chaos at low temperatures should gradually transform into the pseudo-FPU regime.

5. Numerical results

The thermal conductivity is computed along the above lines, with additional averaging over
disorder realizations.
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5.1 KG chain

We first present results for the disorder strength W = 2. Here the localization length
ξ ≈ 25 and the localization volume V ≈ 75. The thermal conductivity κN is plotted for
various temperatures vs. system size N in figure 1. For large temperatures, T ≥ 0.1,
the conductivity reaches its saturated level κ at system size N ≈ ξ . For the linear wave
equation, exponentially localized NMs induce a dependence κlinear ∼ e−N/ξ . In the pres-
ence of nonlinearity the exponential decay with N will stop at the saturated value of κ .
Assuming that κ ∼ T α it follows that the system size for saturated conductivity values
scales as N ∼ −αξ ln T . Thus, for lower temperatures the system size needed to reach
saturated values of κ increases. This is due to the dropping of the saturated value of κ

with T . We were able to reach temperatures as low as T = 0.005 and conductivity values
κ = 0.008. According to ref. [10] (inset in figure 3) the regime of strong chaos is realized
for 0.01 < T < 0.3. Therefore we expect to observe κ ∼ T 2 for 0.01 < T < 1, followed
by a maximum and a further dropping with increasing temperatures. These predictions are
indeed compatible with the numerical results in figure 2. We also compute the conductivity
for a reference ordered chain with ε̃l = 1, which coincides with the high-temperature part of
κ(T ) for the disordered case. Therefore, the observed maximum is due to disorder, as well
as the decrease of κ with further lowering of the temperature. The low-temperature data are
also consistent with the T 2 law. However the temperature window is too narrow to conclude
about a confirmation. Also, we expect that at even lower temperatures (so far not reach-
able with our computational means) the conductivity should cross over into the weak chaos
regime and follow the T 4 law.

To find evidence for the asymptotic low-temperature behaviour κ ∼ T 4 we chose a
stronger disorder W = 6. In that case ξ ≈ 3 and V ≈ 10. The conductivity is reduced
by two orders of magnitude. We are therefore quite limited in the temperature window,
and do not obtain conclusive data (see figure 2). We again find a maximum in the κ(T )

dependence, and a clear indication that the small-temperature conductivity drops faster than

Figure 1. KG chain: the size-dependent thermal conductivity κN vs. N for different
temperatures and W = 2.
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Figure 2. KG chain: κ(T ) for W = 2 (filled squares). For comparison we also show
the data for ε̃l ≡ 1 (filled circles). Thin solid lines guide the eye. The dashed line
corresponds to the power law T 2. The stronger disorder case W = 6 corresponds to the
open diamond data points.

T 2 with temperature. Yet we do not have enough low-temperature data to conclude about
the exponent.

5.2 FSW chain

To observe the asymptotic low-temperature behaviour of conductivity, we explore the
strong disorder limit and study the FSW chain. Since the localization length ξ = 0 for
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Figure 3. FSW chain: κ(T ) for system sizes N = 16 (filled circles), N = 64 (filled
squares) and N = 256 (filled diamonds). The dashed line corresponds to the T 4 law.
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the FSW chain, we can use small system sizes for small temperatures, while (as discussed
above) we shall need larger system sizes to obtain the saturated conductivity values for
larger temperatures. In figure 3 we plot the conductivity κ vs. temperature for different
system sizes N = 16, 64, 256. Indeed, we observe a significant difference between the
data for temperatures T > 1, while the data agree well for lower temperatures. Therefore
we can reach lower values of the conductivity as compared to the KG chain case. Yet for
κ < 10−4 (which corresponds to T ≈ 0.01) we again reach our computational limitations,
since the number of realizations and the integration times, which are needed to reduce the
impact of fluctuations, increase drastically. The numerical results in figure 3 indicate that
for low temperatures the conductivity behaves as κ ∼ T 4. Also at larger temperatures we
observe a cross-over to the predicted pseudo-FPU regime. Again we need more data in the
low-temperature regime to be more conclusive about the conductivity data.

6. Discussion and outlook

We computed the thermal conductivity for nonlinear disordered chains and obtained results
which indicate that theoretical predictions based on wave packet spreading are plausible. In
particular, we find indications for an asymptotic low-temperature κ ∼ T 4 and intermediate
temperature κ ∼ T 2 laws. To be more conclusive, we need data at even lower temperatures
than those presented here. The needed CPU times are however currently exceeding our
capabilities. Possible solutions include the usage of massive parallel computing equipment,
or the search for other models which will allow to make the needed observations with
standard computational equipment.
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