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Abstract. We study theoretically the effect of truncating the nonlinear restoring force (exp(®)—1 =
Y02 @"/n!) in the bistability pattern of the periodically driven, damped one-degree-of-freedom
Toda oscillator that originally exhibits soft-spring bistability with counterclockwise hysteresis cycle.
We observe that if the truncation is made third order, the harmonic bistability changes to hard-spring
type with a clockwise hysteresis cycle. In contrast, for the fourth-order truncation, the bistability
again becomes soft-spring type, overriding the effect of third-order nonlinearity. Furthermore, each
higher odd-order truncation attempts to introduce hard-spring nature while each even-order truncation
turns to soft-spring type of bistability. Overall, the hard-spring effect of every odd-order nonlinear
term is weaker in comparison to the soft-spring effect of the next even-order nonlinear term. As
a consequence, higher-order approximations ultimately converge to the soft-spring nature. Similar
approximate analysis of Toda lattice has in recent past revealed remarkably similar flip-flop pattern
between stochasticity (chaotic behaviour) and regularity (integrability).

Keywords. Toda oscillator; Duffing oscillator; soft-spring and hard-spring bistabilities; principle of
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In the course of analytical studies (e.g., perturbation analysis of a dynamical system),
researchers commonly truncate some or other complex expansions in the respective the-
oretical model for convenience. On the condition that no significant qualitative change
would occur in the given operating regime if higher-order nonlinear terms are taken into
account. However, in many an occasion, it has also been observed that increasing the
order of approximation just once may lead to a contrasting scenario. For instance, we cite
the classic example of Contopoulos and Polymilis [1] who have numerically analysed the
effect of finite-order approximation of the exponential potential in three-particle Toda lat-
tice [2]. When the potential is truncated at third order, the model is reduced to Henon
and Heiles (HH) Hamiltonian. Thus, while the original Toda Hamiltonian is integrable,
the third-order approximation can exhibit chaotic dynamics. Contopoulos and Polymilis
have investigated in great detail the transition from chaotic HH Hamiltonian to integrable
Toda model, by increasing higher-order terms sequentially, and observed a very interesting
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pattern: The dynamics of third- and fourth-order approximated models are in sharp con-
trast. For instance, for a large range of energy, when the third-order approximation is
chaotic, fourth order shows regular behaviour. Furthermore, for all the odd-order approx-
imations, the dynamics is qualitatively similar to the HH case. It appeared in some sense
that, for a given energy, odd-order terms tend to make the system chaotic while even-order
terms attempt to induce order or integrability. Even-order terms dominate and as a result,
asymptotically, the integrability prevails. In the intermediate regime of approximation, one
may notice a flip-flop pattern between chaotic and regular dynamics. Similar truncation
analysis has been made by others [3,4] including with a perturbed HH Hamiltonian [5] and
with the sixth-order truncation of Toda Hamiltonian [6].

In this paper, we are interested to inquire in what way the approximated nonlinear sys-
tems will behave if similar truncations were carried out in the dissipative limit. We consider
the class of one-degree-of-freedom nonlinear oscillators for simplicity. It is well-known
that subject to the symmetry of the potential and nonlinearity of damping, these oscillators
go to some or other equilibrium states or even exhibit Hopf bifurcation but cannot become
chaotic. To make them chaotic, the dimension requires an enhancement, typically by some
(quasi)periodic force (parametric excitation), delayed feedback etc. In this paper, we con-
centrate on periodic driving. In weak driving, the oscillator shows harmonic resonance that
is symmetric as in a simple harmonic oscillator. When the drive amplitude is increased fur-
ther, harmonic resonance exhibits bistability and various subharmonic resonances occur, as
observed in Duffing, Morse, Toda oscillators [6a], and gravitational pendulum in particu-
lar, and the periodically driven nonlinear systems in general. Typically, there are two types
of bistabilities, soft-spring and hard-spring types [6b]. We illustrate this feature further
through the schematic bifurcation diagrams of harmonic bistability in figure 1. The verti-
cal coordinate X represents any suitably sampled dynamical variable, say the stroboscopic
projection with sampling frequency the same as the driving frequency. In each panel, the
solid lines AB and CD refer to stable period-1 states while the broken line BC refers to the
unstable period-1 state. In soft-spring bistability (figure 1a), the upper turning point ‘C’ is
inclined towards low-frequency side. In some loose yet popular sense of mechanical vibra-
tion, the inclination towards low-frequency side may be thought of as the reduction of the
resonance frequency due to reduced stiffness (‘softening effect’ in some sense). The asso-
ciated jumps due to inverse saddle-node bifurcations from the points ‘B’ and ‘C’ (shown
by straight arrows) lead to counterclockwise hysteresis. In contrast, in hard-spring bista-
bility (figure 1b), the upper turning point ‘B’ is inclined towards high-frequency side that
again may be thought off as due to the increase of stiffness. Also, the hysteresis cycle is
clockwise. Typically, in a symmetric Duffing oscillator, the sign of the cubic nonlinearity
in the restoring force determines the nature of bistability [14]. If it is positive, bistability is
hard-spring type. In contrast, if it is negative, the bistability is soft-spring type. It would
therefore be interesting to explore whether finite orders of approximation of restoring force
lead to any qualitative changes in the type of bistability. In this paper, we indeed show a
fascinating flip-slop scenario with Toda oscillator model of class-B lasers. The oscillator
equation can be written in the following form:

d + ad[1+c(exp(®) —1)] + [1—mcos (wr)](exp(®)—1) = F cos (0T +V),

ey
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Figure 1. Schematic bifurcation diagram of typical harmonic bistability patterns. The
vertical coordinate X represents a suitably sampled (say stroboscopically) dynamical
variable and the horizontal coordinate is the driving frequency. The turning points B
and C represent saddle-node bifurcation conditions. (a) Typical soft-spring bistability
pattern. The upper turning point is located at the low-frequency side and the hysteresis
cycle is anticlockwise. (b) Typical hard-spring bistability scenario. The upper turning
point is located at the high-frequency side and the hysteresis cycle is clockwise.

where

and
9= tan’l(a)SZ/e) .

The laser intensity I = Iyexp(®) where Iy = € — 1 is the laser intensity in the absence
of any cavity-loss modulation and € is the pump parameter. The cavity-loss k = ko(1 +
m cos(wt)) and the relaxation oscillation frequency Q = +/ko(e — 1). The dissipativity
a =¢€¢/Qand c = (¢ — 1)/e. From eq. (1), one can also notice that the resonance fre-
quency w; = 1.

The complexity of the oscillator dynamics depends on the operating regime. We consider
the following parameter values as an example: kg = 1.5 x 10* ¢ = 2, = 0.015 and
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observe that a modulation depth as small as 0.005 requires many higher-order terms of
the exponential series for the convergent behaviour. Let us define the period-1 solution of
eq. (1) as follows:

o, = Ap+ Ajcos(wt + &) + Az cosQRut + &). 2)

On the basis of the FFT analysis of the period-1 solution at various values of the
drive amplitude, we notice that eq. (2) is a good approximation in the parameter regime
(m < 0.00035). Therefore, to describe the convergence process in the harmonic bistability
semi-analytically, we consider m = 0.0003. Next we approximate the exponential func-
tions in the damping and restoring force terms in finite series. Following the principle of
harmonic balance method [15], we substitute eq. (2) into (1), and equate constant terms,
coefficients of cos(wt), sin(wt), cos(Qwt), sin(2wt) from both sides of eq. (1). Finally,
we derive a system of five coupled nonlinear algebraic solutions [15a]. By solving these
equations numerically, we compute the frequency response of the harmonic amplitude A;
for various orders of approximations of the exponential function in the restoring force term.
These response curves may be considered as the representatives of the actual bifurcation
diagrams. Every turning point in the response curve represents a saddle-node bifurcation.
Figure 2a shows the frequency responses for various orders of truncation in the restoring
force of eq. (1). The exponential function in the damping term is approximated up to sixth
order which is found to be satisfactory. Curve (a) shows the frequency response in the
case of third-order approximation. Let the driving frequency of the upper turning point be
denoted by wy; where the suffix ‘s’ stands for saddle-node bifurcation and ‘3’ stands for
third-order approximation. We notice that third-order approximation exhibits hard-spring
bistability with wg3 > w;. In contrast, when we consider the fourth-order approxima-
tion, the bistability is soft-spring type, as seen from the frequency-response curve (b). We
denote the driving frequency for the upper saddle-node bifurcation by w4 where the suf-
fix ‘s’ stands for saddle-node bifurcation and ‘4’ stands for fourth-order approximation.
From curve (b) we may notice that wgs < w,. This means the fourth-order term over-
rides the hard-spring effect of the third-order term and exhibits soft-spring bistability. The
curve (c) shows the frequency response for fifth-order approximation (n = 5). In this
case, an overall convergence has been reached in the low-amplitude regime that attributes
soft-spring pattern. However, the peak of the response curve is inclined again towards
high-frequency side (in comparison to the fourth order approximation). This implies that
the hard-spring effect of the fifth-order term could partially override the soft-spring effect
of the fourth-order term even though there is a gradual convergence towards the soft-spring
nature. Let us denote the drive frequency for the corresponding saddle-node bifurcation
by wgs where the suffix ‘s’ stands for saddle-node bifurcation and ‘5’ stands for fifth-order
approximation. From curve (c), we notice that wgs < wg3. Overall, this is an intermedi-
ate or mixed stage that exhibits soft-spring nature in the small A, regime and hard-spring
nature at the peak. For the sixth-order approximation [curve (d)], the peak again swings
to low-frequency side. However, the swing is much less than that in the case of fourth
order. Following previous convention to identify the driving frequency of the upper turning
point, we notice that wy < wy < w;. Curve (e) refers to the frequency response curve
for seventh-order approximation. In this case, the noticeable point is that peak of the curve
has shifted towards low-frequency side; wss < ws7 < w;. This implies that the odd-order
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terms are no longer adequately strong to counterbalance the soft-spring effect of the even-
order terms. The quantitative convergence of the soft-spring bistability is further endorsed
from curve (f) that refers to eighth-order approximation. Thus, the limiting value of the
drive frequency for the upper turning point will be within wy; and wgg. Figure 2a shows the
numerically simulated bistability patterns (Y vs. w) for various stages of approximation
of restoring force. The damping function has been approximated at tenth order that is rea-
sonably adequate. Y denotes the stroboscopically sampled asymptotic fixed points of ®;
sampling frequency equals to w. Coloured curves (a)—(f) show the bifurcation diagrams for
n =3,4,...,8respectively. For even values of n; n = 4, 6, 8, the bistability is soft-spring
type with the upper turning point wg < ;. For n = 3, the bistability is hard-spring type
with wg > ;. For n = 5, an overall convergence has been reached in the low-amplitude
regime that resembles soft-spring pattern. However, the peak is still tilted towards right-
hand side. Therefore, this is an intermediate or mixed stage between soft- and hard-spring
type. From n = 7, 8 onwards, the bistability pattern appears convergent to a soft-spring
scenario. Thus the results of semi-analytical studies have been endorsed by the numerically
simulated results.

Having investigated the effect of approximation of the exponential function in the restor-
ing force, it may also be interesting to know what is the effect of similar approximation of
the exponential function in the damping term in eq. (1). We continue the semi-analytical
studies of harmonic resonance with unchanged values of oscillation parameters. The restor-
ing force is approximated up to eighth order which is found to be satisfactory. Figure 3a
shows the results for various stages of approximation of the nonlinear damping function in
eq. (1). Curves (a), (b), (c) and (d) respectively denote the n = 3,4, 5 and 6th order of
approximation. Here again one notices another type of flip-flop pattern, namely the loca-
tion of the upper turning point goes up and down. The height of the peak along the inclined
tongue is highest for third-order approximation and lowest for fourth order. As we improve
the approximation, the location of the peak converges somewhere in between. We may
remark that the presence of exponential function in the damping term enhances the dissi-
pativity and therefore raises the onset of subharmonic bifurcations or chaos. Also notice
that various stages of approximation in the damping term do not change the qualitative
nature of bistability as it is always soft-spring type. Similar features have been confirmed
by the numerical integration of eq. (1). For instance, figure 3b shows the bistability pat-
terns at various stages of approximation of nonlinear damping function. One would notice
that for odd values of n;n = 3,5, the peak of the response curve goes up. In contrast,
for even orders of approximation, the peak comes down. The limiting scenario is close to
sixth-order approximation.

To investigate in more detail the mixed stage of harmonic stability, we analyse the har-
monic resonance at a relatively large modulation depth m = 0.001. Figure 4 illustrates
a few numerically simulated bifurcation diagrams for various stages of approximation in
the nonlinear restoring force. In figure 4a, we show the third (violet circles) and fourth
(green curve) order approximations. Third-order approximation exhibits hard-spring bista-
bility and clockwise hysteresis, as evident in the bistable region ‘1234’. In contrast, the
fourth-order approximation has a very narrow bistable region (not prominently visible) that
exhibits soft-spring behaviour. The peak height is also relatively small. Next, we have
included the higher-order nonlinear terms sequentially up to 20th order. The bifurcation
pattern of the approximated models can be divided into two groups — the even-order and

Pramana - J. Phys., Vol. 77, No. 5, November 2011 991



992

B K Goswami

2.30— (o)

HARMONIC AMPLITUDE

0.00 S N s

0"0 1-00 . e z 150

1.8 . T T . .

1.6 e

14+

1.2 +

04+

0.2+

Figure 2. (a) Frequency response of the harmonic amplitude (A;) for various stages
approximation of the restoring force; m = 0.0003. Curves (a)—(f) show the frequency
responses for n = 3,4, ..., 8 respectively. (b) Numerically simulated bifurcation dia-
grams (Y vs. o) for various stages of approximation of the restoring force; m = 0.0003.
The coloured curves (a)—(f) show the bifurcation diagrams for n = 3,4, ..., 8 respec-
tively. The coloured symbols of the bifurcation diagrams are defined as follows: (black)
n = 3; (light blue) n = 4; (pink) n = 5; (orange) n = 6; (green) n = 7 and (blue)

n=2a.
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Figure 3. (a) Frequency response of the harmonic amplitude (A1) for various stages of
approximation of the nonlinear damping function; m = 0.0003. Curves (a)—(f) show
the frequency responses for n = 3,4, 5, 6 respectively. (b) Numerically simulated
bifurcation diagrams (Y vs. ) for various stages of approximation of the nonlinear
damping function; m = 0.0003. The coloured symbols of the bifurcation diagrams are
defined as follows: (black) n = 3; (blue) n = 4; (red) n = 5, (green) n = 6.

the odd-order approximations. To explain further, we present some selected cases as exam-
ples. In figure 4b we show seventh (blue curve) and eighth (red curve) order approxi-
mations. In seventh-order approximation, the hysteresis cycle ‘3456’ is clockwise with
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Figure 4. Bifurcation diagrams in the harmonic resonance for various stages of approx-
imation in the nonlinear restoring force; m = 0.001. (a) Third- (violet curve) and
fourth- (green curve) order approximations. (b) Seventh- (blue curve) and eighth- (red
curve) order approximations. (¢) Eleventh- (pink curve) and twelfth- (light blue curve)
order approximations. The bistable region is within the green segmented box ‘A’ and
the tristable region is in blue segmented box ‘B’. (d) Fifteenth- (blue curve), sixteenth-
(red curve) and twentieth- (green curve) order of approximations.

hard-spring bistability. However, in comparison to the gradual rise from the point ‘6’ to
‘4’ (in the period-1 branch) in the third-order approximation, the seventh-order approxi-
mation exhibits a sharp rise from point ‘1’ (in the small-amplitude period-1 branch) to the
point ‘2’ in the large amplitude period-1 branch. Eighth-order approximation again shows
a pattern, similar to n = 4 and opposite to n = 7 order approximation. The upper turn-
ing point has gone up and there is a distinct bistable region ‘1978 with counterclockwise
hysteresis cycle. In figure 4b, we show the eleventh-order (pink curve) and twelfth-order
(light blue curve) approximations. Eleventh-order approximation still has a ‘1274” hys-
teresis cycle with hard-spring bistability. However, the softening effect is also much more
prominent, resulting in a bistable region (within the green segmented box A) and a tristable
region (within the blue segmented box B). Thus, we find a mixed nature where one can-
not attribute a unique pattern. In contrast, the twelfth-order approximation is qualitatively
similar to the eighth-order approximation. Here again, the upper turning point has gone
up further and there is a relatively large bistable region ‘8756’ with counterclockwise hys-
teresis cycle. As we improve the order of approximation, this intermediate behaviour for
odd-order approximations gradually get transformed to pure soft-spring bistability with a
gradual disappearance of hard-spring bistable region. This would be imperative in figure
4d where we show the 15th order (blue curve), 16th order (red curve) and 20th order (green
curve) of approximations. From figure 4a—4d one can notice that the upper turning point of
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the odd-order approximations is steadily coming down and the hard-spring bistable inter-
val is also reducing. In contrast, soft-spring bistable window is increasing and the upper
turning point is also rising. Also, in the convergent scenario (n = 20), the tristability
has disappeared. Thus we notice that all even-order nonlinear terms attempt to introduce
soft-spring bistability. In contrast, all odd-order terms attempt hard-spring bistability. The
overall convergence exhibits soft-spring bistability.

Next we investigate the effect of truncation of the nonlinear restoring force in the period-
2 subharmonic resonance phenomenon. We consider a relatively large magnitude of the
driving amplitude (m = 0.001). Figure 5 illustrates the associated subharmonic bista-
bility patterns. The nonlinear damping function has been approximated at n = 10 that
has been found adequate. Figure 5a shows the case of third-order approximation in the
restoring force. The typical scenario is as follows: If we reduce the driving frequency
from @ > 2, the system exhibits supercritical period doubling at the point ‘1’ and remains
in the period-2 state till it undergoes an inverse period-2 saddle-node bifurcation at point
‘2’ and then the system jumps to the point ‘3’ in a coexisting large-amplitude period-2
branch. When we decrease w further, the system remains at the large-amplitude period-
2 branch till it undergoes another inverse saddle-node bifurcation (at the point ‘4’) that
leads the system to another period-1 branch (at the point ‘5’). If we increase w thereafter,
the system remains at the period-1 state till it undergoes subcritical period doubling (at
point ‘6’) and subsequently, the system jumps back again at the point ‘7’ on the large-
amplitude period-2 branch. If the frequency is increased steadily, there will be another
inverse saddle-node bifurcation at the point ‘8" when the system will jump down to the
period-1 branch at the point ‘9’. Note that the points ‘1’ and ‘6’ are the boundaries of the
period-2 subharmonic resonance region. Also, the points ‘4’ and ‘6’ are connected by a
period-2 saddle (schematically shown by a blue solid curve). Similarly, the points 2’ and
‘8’ are connected by another period-2 saddle (schematically shown by a blue solid curve).
The orbit structure, that connects the ‘6°, ‘4’, ‘8’, 2’ and ‘1’ points, describe the period-2
subharmonic resonance. In this structure, the low-amplitude regime ‘6421’ is bent towards
low-frequency side, a feature of a soft-spring oscillator. However, the peak ‘482’ is bent
towards the high-frequency side, a feature of a hard-spring oscillator. The low-amplitude
regime has a bistable window ‘56’ or ‘47 where the hysteresis cycle is counterclockwise.
In contrast, the peak has another bistable window ‘38 or ‘219’ that will have a clock-
wise hysteresis cycle. Thus, n = 3 order approximation is rich with hard-spring as well
soft-spring bistable patterns. In contrast, n = 4 (shown in figure 5b) reveals a purely soft-
spring bistability. Here, as we decrease frequency from the right-hand side of the period-2
resonance region, the period doubling is supercritical at the point ‘1’ and the period-2,
thus created, disappears at a lower frequency (at the point ‘2’) via an inverse saddle-node
bifurcation and the system jumps to the period-1 branch at the point ‘3’. If we increase
w further, the period-1 undergoes subcritical period doubling at the point ‘4’ where the
system jumps again back to the period-2 branch (at the point ‘5’). The period-2 saddle
is schematically shown by the blue solid curve joining the points ‘2’ and ‘4’. From the
orbit structure ‘2345°, one may notice a bistable interval ‘34’ (or 25’) where a period-1
state coexists in the phase space with a period-2. Also, the hysteresis cycle ‘4523’ is coun-
terclockwise. From these two stages of approximations, we notice that the odd order has
both hard as well as soft-spring bistabilities. In contrast, the even-order approximation has
only soft-spring bistability. Let us now increase the order of approximation sequentially
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and see the qualitative evolution of the bistability patterns. In figure 5c, we have plotted
the bifurcation diagrams for n = 3,4, 5, ..., 10. Each bifurcation scenario is denoted by
filled circles of a unique colour and the order of approximation is denoted at the respec-
tive upper turning point. For instance, the n = 3 case is shown by the maroon curve and
the upper turning point is denoted by ‘3’. Similarly, n = 4 case is shown by green curve
and the upper turning point is denoted by ‘4’. We notice that all the even orders behave
in a very similar manner and reveal soft-spring bistability pattern with counterclockwise
hysteresis cycle. In contrast, all odd orders also behave in a similar way but exhibit two
bistable regimes, one soft-spring type and the other hard-spring. However, as the order
of approximation increases, there is an overall convergence towards soft-spring pattern, a
feature similar to the harmonic resonance.

Let us now look at these qualitative features in the perspective of those obtained earlier
[1] by similar approximations of conservative Toda lattice:

(D In the conservative case, the cubic approximation in the potential reduces the Toda
Hamiltonian to Henon—Heiles Hamiltonian. In the dissipative case, cubic approximation in
the restoring force leads to an asymmetric Duffing oscillator that exhibits hard-spring bista-
bility in harmonic resonance, and both soft- as well as hard-spring bistabilities in period-2
subharmonic resonance regime.

(II) In the conservative case, the odd-order terms in the potential induce chaotic nature
whereas the even-order terms induce order or integrability. As the order of approximation
increases, the effect of the nonlinear terms reduces, irrespective of whether it is odd or
even. The even-order terms are relatively stronger in comparison to the odd-order terms
and the asymptotic Toda Hamiltonian is integrable. In the dissipative case, the odd-order
terms in the restoring force induce hard-spring bistability. In contrast, the even-order terms
induce soft-spring bistability. In this case as well, as the order of approximation increases,
the effect of nonlinear terms reduces, irrespective of whether it is odd or even. The even-
order terms are however relatively stronger in comparison to the odd-order terms and Toda
oscillator is of soft-spring type [15b].

(IIT) In the conservative case, when the order of approximation is reasonably high,
even-order approximations may also exhibit chaos. In the dissipative case, even-order
approximation has not been found to give rise to hard-spring bistability. The odd-order
approximations however exhibit simultaneous presence of hard- as well as soft-spring
bistabilities in the intermediate regimes.

(IV) In the conservative case, the fourth-order approximation may be qualitatively a
better candidate than the third-order one (i.e., HH) to represent Toda Hamiltonian. In
the dissipative case, in a similar way, fourth-order truncation (with a suitable scaling of
the fourth-order nonlinear term) may be preferable to the third-order truncation (Duffing
oscillator) to represent Toda oscillator.

To conclude, we have demonstrated a flip-flop scenario between soft-spring and hard-
spring bistabilities in Toda oscillator dynamics when the exponential function in the
restoring force is approximated. The even-order terms create soft-spring bistability while
the odd-order terms lead to hard-spring bistability. The even-order terms are stronger than
the odd-order terms. As the order of approximation is increased, the effect of either type
declines. The convergent nature of Toda oscillator is of soft-spring type. This flip-flop sce-
nario between hard-spring and soft-spring bistabilities in dissipative Toda oscillator may
have some analogy (in some sense) with flip-flop between stochasticity and regularity in
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Figure 5. Bifurcation diagrams in the period-2 subharmonic resonance region for
various stages of approximation in the nonlinear restoring force; m = 0.001. (a)

Third-order approximation shows soft-spring as well as hard-spring bistabilities. (b)
Fourth-order approximation shows soft-spring bistability. (c¢) The superposition of
bifurcation diagrams for n = 3, 4, ..., 10 order of approximations.

the approximate analysis of Toda Hamiltonian for lattice vibration. A flip-flop scenario has
also been observed when the exponential function in the damping term is approximated.
In this case, the peak height oscillates between high and low values before converging
somewhere in between.

Notice that we have studied the effect of finite-order approximation of the exponential
function individually in the restoring force and the damping function. In order to do that,
while studying the effect of restoring force function approximation, the damping function
has been approximated adequately and vice varsa. Besides, the magnitude of the driving
amplitude is small. The situation may be more complex if both the approximations are
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of inadequate order and (or) the driving amplitude is relatively large. Finally, we may
also remark that Morse oscillator is asymmetric and somewhat similar to Toda oscillator.
Therefore, Morse oscillator is also expected to exhibit a similar flip-flop bistable scenario.

Appendix
Let

O, =D =Ayp+ A;cosO; + Ay cos by, (1a)
where

0 =wt+& and 6, =2wt +&. (1b)

Let, 'y and T}, denote the coefficients of cos(/6; + m#0) in Fourier series of ®" and

(AjcosO) + A;cos6,)" respectively. For negative values of [(m), a ‘—’ sign is inserted
before the respective [(m) in the subscript of I',;,. For instance, I';;_; denotes the
coefficient of cos(26; — 6,) in the Fourier series of 3.
Fourier coefficients of ®, ®2 and ®3:
100 = Ao; o = Ay o1 = Az
Thoo = (AT + A2)/2; Tago = Aj+ Ty oo = ArA,
a0 = 2A0A1; o1 = 2A0As; T = A7/2
Ty = (3/4)A3Ay;  Tsg0 = AJ + 3A0y + Taom1 cos(2€) — &)
Th0=0G/MA] + (3/2)A1A%; Tai0=3A1A3+ T Tson =3Ac-n
Tho =B/MA3 4+ (3/2)A2AY; Taor =3A2A3+ i Tsoo = (3/2)A0AT
T30 = A} /4.
Fourier coefficients of ®*:
Typ1 =4A0T5-1; Ty = (3/8)(AT + A3) + (3/2)ATA3
Tao0 = Aj + 6A5T ) + Ty + Taz—1 cos(2&) — &)
Tai0 = 4A3A1 +4A0T,
T\ =0/2A1A2(AT + A)); Tan=6AiT2 n+T_ ;3 T 1=A7Ay/2
T = A1/2 4 (3/2)ATA3; T = 3A3AT + Ty Tz = (3/4)AIA]

Tuz0 = 4Aol330:  Taso = A1/8.
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Fourier coefficients of ®°:
Tf, = (5/9)A%A, + (15/8)A2A3;  Ts,y = 10A2Ts + T,
Tso0 = A3 + 10430 + 5A0Tg + T'sa—1 cos(2&) — &)
Tl = (5/8)A 4 (15/4)A3A2 + (15/8) A, A}
Tsio = 5A5A; + 10A31%,, + Ty
[s_11 = 10A3T 11 + 5407,
Isio) =5A0Ta-1;  Ts_3 = (5/8)ATA3
Tsp0 = SAJAT + 540 y;  D'sooo =5A0T4_2;  Tsamy = (5/16)AAT
I = (5/16)A3 + (5/4)A3A%;  Tszo = 1043530 + Ty

['s40 = 5A0T 440.

Fourier coefficients of ®°:
Ter—1 = 20A3T 301 +6A0TY%, 3 Tesn = (15/32)ATA3 cos(4é) — 26,)
Thoo = (5/16)(AS + AS) + (45/16)ATA3 (AT + A2)
Teoo = A§ + 154800 + 1543400 + Téoo
+ Fe2—1c0os(281 — &) + [ea—2 cos(4é; — 26)
Toi0 = 6A3A1 + 20A3T%,, + 6A0T% ),
Ty 1 = (45/8)A A3 + (15/8)A1 A2 (AT + A%)
Te11 = 15AT 1 + 15A21,_, + T4,
T = (15/16)A7Ar + (15/8)ATA3;  Tes1 = 15431 + Tpy
Fe-30 = 6A05_3
T = (15/32)AS + (15/4)ATA3 + (45/16) AT A3
T = (15/2)A§AT + 15A3T 4y + T
T 5, = (15/8)A2A3(A? + A3); T = 15A3T4m + '} ,,
Fos—1 = 6A0T 54—
T30 = 2043 330 + 640 530;  To-33 = (5/8)AJA3;  Tes1 = (3/16)A7A;

Tho = B/16)AS + (15/16)A1A%;  Teao = 15A2Taa0 + Tiyy-
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Fourier coefficients of ®7 (up to third order):
I, | = (105/16)ATA3 + (105/64)AS A, + (105/32)ATA3
P71 = 35A3F3271 + 21A%F§2—1 +T
Tr00 = AJ + 214300 + 3543400 + 7A0T 400
+ T7p_1 cos(2&) — &) + TAoTg4—2 cos(4&) — 2&,)
I, = 35/64)A] + (105/16) AT A3 + (315/32) A} A3 + (35/16) A AS
['710 = TA§A| + 35A8T% 0 + 21 AT o + Ty
T7o1p = 21ATo 11 + 35A30, |, + 7AT_y;
T30 = 35A3 431 + TAoTGs_,
T} 5, = (105/64)ASA% + (35/16)A1A%; Ty 3 =21A2 s 5 + T o,
T7s_p = (21/64)ATA3
Tl = (35/64) A7 4 (105/16)ATA3 + (315/32)ATA; + (35/16)AJA,
F701 = 7A8A2 + 35A3F§01 + 21A3F§01 + T,
[0 = (21/2) AJAT+35A3T )00 +7A0 Ty 720 = 35A3T 400 +7A0T »,
I, = (105/64)ATA3 + (21/32)ASAr;  Tyaoy = 21A sy + T,
7_43 = (35/64)A}A3
T = (21/64) AT + (105/32) (A A3 + A A3)
T'730 = 35A¢ 330 + 21A5T 550 + Ty

733 =T7AoT6-33; T'75_1 = TAoles5-1.

Fourier coefficients of ®* (up to third order):

Tgo 1 = S6AT3 1 + 56A3T%, | + 840l |

T4, = (21/16)ASA3 + (35/16)A1A%;  Tsa—nr = 28A3Tean + I'fy
Thoo = (35/128)(AS + AS) + (35/8) ATA(AY + AD) + (315/32)A%AS
T'g00 = AS + 28A5T 0 + T0A3T 00 + 28 A3 T 500 + Taoo

+ Igp—1 cos(2§ — &) + IM'ga—p cos(4é) — 2&,)
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Tgi0 = 8AJA| + 56A3T o + 56AJTS ) + 8A0TY,

Ty = (35/16)(A] Ay + AJAy) + (105/8) A A3 (AT + AD)

Tg 11 =28A8To 11 + 70AQT, |, +28A3T; |, + Ty 1y

Ty | = (21/16)A] Ay + (105/16) AT A3 + (15/4) A3 A3

Tg3-1 = TOAT 431 + 28A2%; | + Tgs

Tg_30 = 56A3's_3 + 8AoI_5,

Tgs_o = 8A¢T75_2; TD's_s3 = (7/16)ATA3

Tho = (7/16) A% + (105/16) AS A3 + (105/8) A A + (35/8) A2 AS

Tg0 = 14A5A% + T0AGT 0 + 28A3T 150 + T

Iy, = (105/32)ATA3 (A + A3) + 35/4)ATAS

g 2 = 70AG 42 + 28A3T 5, + T o

T4 = 56A3sa_1 +8A¢TS,

Tgo—2 = (7/32)A0A3; T 43 = 8AoI7-43

Tg30 = S6A3M330 + S6A T L5, + 8AoT 5,

Tg_12 = 56A3_ 10 + 56AT_ 1, + 8A¢,_,

Ty 33 = (35/16)AJA3 (A + A):  Tg_a3 = 28A3T6 33 + [y_s;

Tis | = R1/16)ATAS + (7/16)A] Ay;  Tgs—y = 28A2T6s—1 + Igs_,-
In the system of nonlinear equations (H) (see at the end), we use a few more coefficients

which are not defined in the previous text. However, they can be easily determined using
the following symmetry relations of I';;;,,:

L (A1, A2) =T, (Ay, Ay). (2a)
Hence, for either of [ or m # 0,

Loim (Ao, A1, A2) = Tumi (Ao, Az, Ay). (2b)
Also

Chi1(Ao, Aty A2) =T_11(Ag, Ay, Ay), (20)
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and

In21(Ao, Aty Az) = Tip—1(Ao, At Az). (2d)
Henceforth, the lower limit of summation over 7 is unity. Also,

Cwm =0 for n < |l| + |m].

Next, we denote the following terms:

Noo =Y Tuoo/n! (3a)
Cim =Y _ Tuim cos(l& +mé&)/n! (3b)
Sim = Y _ T sin(l€; + m&) /n! (3c)

(in the identities (3), the upper limit of summation is eight) and, in similar fashion, the next
series of terms are defined as follows:

Deio =Y Ai(Tuoo — (1/2)T20) cos(&1) /!

Dyio =) Ai(Tyg0 — (1/2)Tya0) sin(&1) /!

Doy =) (Aalwio — (1/2)A1T o1 — Aol 1) cos(&, — &) /n!
D; 1 = Z(AZF,,H) — (1/2)ATho1 — Al 1) sin(&; — &1)/n!
D. 3 = Z(AZFM,I — (1/2)AT'y—20 — Al _33) cos(2&, — 3&1)/n!
D 3 = Z(Aang_] — (1/2)ATy—2p — Al —33) sin(2§, — 3&1)/n!
Dgs_ 1 = Z(AZF,,_32 — (1/2)A1Tha—1 — AsT,30) cos(3& — &) /n!

D1 =Y (Aaly 3 — (1/2) ATy — Aslyo) sin(3&; — &)/n!
D52 = —Asles—1 cos(551 — 26,)/6!

Dys o = —AslNes 1 sin(58; — 2&,)/6!
Deot = Y (2Tn00 — Do) Az cos(€) /n!

Dsor = Y (2Tu00 — Tuo2) Az sin(€) /n!
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Deag = ) _[(1/2)A1(Tyio — Tuzo) — AsTa] cos(281) /!

Dyo = Y [(1/2)A1(Tyio — Tyz0) — AaTi]sin(28))/n!
Desy =) [(1/2)A1(Ty3—1 — Tus—1) — AaTagl cos(4€) — &)/n!
Dy 1 =) [(1/2)A1(Ty3-1 = Tus 1) — AsTagl sin(48) — &)/n!
Doy =) [(1/2)A1(T, 3 — Ty12) — AsTy 23] cos(2; — 2&)) /!

Dy =Y [(1/2)A1(Ty_3 — Ty12) — Aol 23] sin(2€; — 2£1)/n!
De—43 = —(1/2)A1T633 cos(3&, — 4§1) /6!
Ds_43 = —(1/2)A1T6-33 sin(3&; — 4;)/6!.
(In the previous set of identities, the upper limit of summation is six.)
Applying the principle of harmonic balance method in eq. (1) and applying all the iden-
tities mentioned in this appendix, we derive the following set of five coupled nonlinear
algebraic equations of the unknown variables (A, A, A», &1, & ). The equations are written

below [from eqs (H;) to (Hs)]:

Fi = Noo— (1/2)(Cio+C11 +C3-1 +C_3p+C5 2 +C_53) =0 (Hy)

F, = — o*Aysin(g)
+ aw[A; cos(&1) + c¢(Dcio + Dc-11 + Dc-32 + Dez—1 + Des—2)]
+ [Sio+ S—11 + S3-1 + S_30+ S5+ S_s3
— (m/2)(So1 + S20 + S—22 + Sa—1 + S—43 + Se-2)]
— fsin(®¥) =0 (Hy)
F3= — A cos(§))
—aw[A;sin(€1) + ¢(Dsio + Ds—11 + Ds—32 + Ds3—1 + Ds5-2)]
+[Cio+Coni+ Gy +C2+ G52+ Cos3
— (m/2)(2Noo + Co1+Co0+C-22+Cs-1+C_43+Cs-2)]

— feos(®) =0 (H3)
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Fy= — 4w’ A, sin(&)
+ awl[2A; cos(&2) + c(Dcor + Dcao + Dea—1 + De—2 + De_s3)]
4 [So1 + So0 + S—22 + Sai + S—a3 4+ S6—2
= (m/2)(S10+ S—11 + S3-1+ S-32 + Ss52 + S—s53 + S30 + S

+S_ 12+ 85-1+5-33)] =0 (Hq)

Fs = — 4w’ A, cos(&)
—aw[2A;sin(&) + c(Dsor + Dsao + Dsa—1 + Ds—22 + Ds—43)]
+[Cot +Co0+ C_p+ Ca—1 + C_g3 + Co_2
—(m/2)(Cio+C_i1+C31 +C_n+Cs2+ C_s53+ C3+ Cyy

+C_1p+Cs_1 +C_33)] =0. (Hs)
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For increased driving amplitude, the magnitude of ® could be larger than unity. In such cases,
the progressive decrease of the effect of higher-order nonlinear terms should occur in the
asymptotic limit.
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