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Abstract. We investigate phase-locked solutions of a continuum field of nonlocally coupled iden-
tical phase oscillators with distance-dependent propagation delays. Equilibrium relations for both
synchronous and travelling wave solutions in the parameter space characterizing the nonlocality and
time delay are delineated. For the synchronous states a comprehensive stability diagram is presented
that provides a heuristic synchronization condition as well as an analytic relation for the marginal sta-
bility curve. The relation yields simple stability expressions in the limiting cases of local and global
coupling of phase oscillators.
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1. Introduction

An ensemble of coupled phase oscillators provides a simple yet powerful paradigm for
studying the collective behaviour of many complex real-life systems and has been exten-
sively studied in this context [1–3]. Under appropriate conditions, phase oscillators can
exhibit stable in-phase synchronous or other types of phase-locked solutions [4]. In a class
of discrete networks of oscillators it has been shown that in-phase synchronous behaviour
can be achieved even in the presence of a fixed signal transmission delay [5]. More intri-
cate dynamics have been discovered in nonlocally coupled continuous networks, whereby
phase-locked and incoherent activity can simultaneously exist at different spatial locations
[6], giving rise to a spatio-temporal pattern that has been termed as a ‘chimera state’ [7]. In
this paper, we discuss the existence and stability of phase-locked solutions in a continuum
of nonlocally coupled identical phase oscillators with distance-dependent delays. Such
delays are a natural consequence of the finite speed of information propagation in space.
In similar contexts, distance-dependent delays have been considered in continuum models
of neural activity [8,9]. In particular, the effects of distributed delays can be very different
from fixed delays [9–12], and the analysis is generally more difficult.
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2. Model system and its synchronous states

We consider a continuum of identical phase oscillators, arranged on a circular ring C
and labelled by x ∈ [−L , L] with periodic boundary conditions, whose dynamics is
governed by

∂

∂t
φ(x, t) = ω − K

∫ L

−L
G(z) sin

[
φ(x, t) − φ

(
x − z, t − |z|

v

)
+ α

]
dz, (1)

where φ(x, t) ∈ [0, 2π) is the phase of the oscillator at location x and time t , whose
intrinsic oscillation frequency ω > 0, K is the coupling strength and G: [−L , L] → � is an
even function describing the coupling kernel. The quantity v denotes the signal propagation
speed which gives rise to a time delay of |z|/v for distance |z| from the location x . As
the oscillators are located on a ring with circumference 2L , the distance between any two
oscillators is given by the shorter of the Euclidean distance between them along the ring. In
this configuration, the maximum distance between the coupled oscillators is L and thus the
maximum time delay would be τm = L/v. If we denote the location of any two oscillators
as x and x ′, then z = x − x ′. α is a parameter which makes the coupling phase-shifted and
has been crucial for observing chimera states.

We choose the coupling kernel G(z) to have an exponentially decaying nature and its
normalized form is taken to be

G(z) = σ

2(1.0 − e−Lσ )
e−σ |z|, (2)

where σ > 0 is the inverse of the interaction scale length and is a measure of the nonlocality
of the coupling. The exponential form of G(z) and the sine coupling function are the
natural consequences of the reduction of a more general reaction–diffusion system to a
phase model under nonlocal and weak coupling limits [6]. We further make time and space
dimensionless in eqs (1) and (2) by the transformations t → K t , ω → ω/K , κ → σ L ,
z → z/L , τm → K τm and x → x/L and obtain

∂

∂t
φ(x, t) = ω −

∫ 1

−1
G(z) sin[φ(x, t) − φ(x − z, t − |z|τm) + α] dz. (3)

G(z) = κ

2(1.0 − e−κ)
e−κ|z|. (4)

We look for phase-locked solutions of eq. (3) that have the form:

φ
,k(x, t) = 
t + πkx + φ0. (5)

These solutions are phase-locked, in the sense that the difference of the phases at two
fixed locations in space does not change in time [4]. They can describe spatially uniform
equilibria (
 = k = 0), spatial patterns (
 = 0, k �= 0), synchronous oscillations (
 �= 0,
k = 0), or travelling waves (
 �= 0, k �= 0). Notice that k needs to be an integer because of
periodic boundary conditions, and the value of φ0 can be taken to be zero by a translation.
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It is useful to first look at the undelayed case (v = ∞). Substitution of (5) into (3) gives
the relation between the temporal frequency 
 and the wave number k as


 = ω −
∫ 1

−1
G(z) sin(πkz + α) dz = ω − Ĝ(k) sin α, (6)

where Ĝ(k) = ∫ 1
−1 G(z) cos(πkz) dz denotes the discrete cosine transform of G. Note that

the role of ω is simply to shift the value of 
. So it can be taken to be zero without loss
of generality (we shall see later that this is no longer true in the presence of delays). When
α = 0, 
 is identical to the individual oscillator frequency ω. More generally, for α ∈ �,
eq. (6) yields a unique 
 = 
(k) for any given k ∈ �. Hence there exists a countably
infinite set of solutions φ
(k),k , k ∈ �, of eq. (3). The condition for spatial patterns with
wave number k is

ω = Ĝ(k) sin α, (7)

and can only be satisfied if |sin α| is not too small. Generically, however, the value of 


from (6) is nonzero. So the set {φ
(k),k : k ∈ �} includes a unique synchronous solution
(k = 0) and the rest correspond to travelling waves (k �= 0), with wave speed equal to

(k)/k. It turns out that in general only a few of the solutions φ
,k can be stable. The
linear stability is determined by the variational equation

∂

∂t
u(x, t) = −

∫ 1

−1
G(z) cos(πkz + α)[u(x, t) − u(x − z, t)]dz,

where u(x, t) = φ(x, t) − φ
,k(x, t). With the ansatz u(x, t) = eλt eiπnx , λ ∈ �, n ∈ �,
we have

λ = −
∫ 1

−1
G(z) cos(πkz + α)(1 − e−iπnz)dz. (8)

After some simplification and using the fact that G is an even function, one obtains

Re λ = −(cos α)

(
Ĝ(k) − Ĝ(k + n) + Ĝ(k − n)

2

)
.

Note that the pair (λ, n) = (0, 0) is always a solution corresponding to the rotational
symmetry of the solutions (5). Hence, φ
,k is linearly asymptotically stable if and only
if the right-hand side of the equation above is negative for all nonzero integers n. For
instance, if Ĝ has a global maximum (respectively, minimum) at k, then the corresponding
solution φ
,k is stable provided cos α > 0 (resp., < 0). Furthermore, if Ĝ(k) > 4|Ĝ(n)|
for all n �= k, then φ
,k is the only stable phase-locked solution (up to a phase shift) for
cos α > 0. In particular, if the coupling kernel is constant (that is, Ĝ(k) > 0 iff k = 0) or
has a predominant constant component (Ĝ(0) > 4|Ĝ(n)|, ∀ n �= 0), then the synchronous
solution φ
(0),0 is the only stable phase-locked solution (up to a phase shift) for cos α >

0, which explains the widespread use of globally coupled oscillators in synchronization
studies.
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We now show that the inclusion of propagation delays offers a much richer solution
structure. We again seek solutions φ
,k of the form (5) when the propagation velocity v

is finite. The relation (6) between the temporal frequency and the wave number now takes
the form


 = ω −
∫ 1

−1
G(z) sin[
τm |z| + πkz + α]dz, (9)

which is an implicit equation in 
. Note that the right-hand side is a bounded and con-
tinuous function of 
; therefore, eq. (9) has a solution 
 for each k ∈ �. However, in
contrast to the undelayed case, it is now possible to have several solutions 
 for a given
wave number k. (Note, however, that the condition for spatial patterns (7) remains identical
to the undelayed case.) Furthermore, the linear stability of the phase-locked solutions φ
,k

is determined through a dispersion relation

λ = −
∫ 1

−1
G(z) cos(
τm|z| + πkz + α)

(
1 − e−λ|z|τm e−iπnz

)
dz. (10)

As before, linear stability requires Re(λ) < 0 for all solutions λ of eq. (10) for all nonzero
integers n. The main difference with the undelayed case eq. (8) is that eq. (10) is an implicit
equation in λ, and so its solution is not straightforward. Furthermore, even for a fixed value
of n ∈ �, eq. (10) generally has an infinite number of solutions for λ. For simplicity we
take α = 0 and carry out the integration in eq. (9) for k = 0 to get an analytical equation
for the synchronous solutions 
 as


 = ω −
∫ 1

−1
G(z) sin(
τm|z|)dz

= ω − κ

(1 − e−κ)

[

τm − 
τme−κ cos(
τm) − κe−κ sin(
τm)

κ2 + (
τm)2

]
, (11)

which is an implicit equation in 
. Being a transcendental equation, its solution can in
principle be multi-valued in 
 for a given set of parameters ω, τm and κ and can lead to
higher branches of collective frequencies as pointed out by Schuster and Wagner [13] for
a system of two coupled oscillators. A similar (much lengthier) analytical expression can
also be obtained for finite values of k which we do not give here. We further define a mean
delay parameter by

τ̄ =
∫ 1

−1
G(z)τm|z| dz (12)

which weights the individual delays with the corresponding connection weights. With the
exponential connectivity given by eq. (4), this translates into

τ̄ = τm
eκ − κ − 1

κ(eκ − 1)
. (13)

This gives values for the limiting cases: τ̄ → 0 for local (κ → ∞) and τ̄ → τm/2 for
global (κ → 0) couplings.

Figures 1a and 1b show plots of the numerical solutions of the equilibrium relations for

 as a function of τ̄ for travelling wave with k = 1 and for synchronous (k = 0) states
respectively. In both cases the value of κ is taken to be 2 and the plots are obtained for
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Figure 1. Frequency 
 of the phase-locked solutions given by eq. (9) is plotted as a
function of the mean time delay τ̄ for κ = 2 and α = 0. The panel (a) is for the
travelling wave number k = 1 whereas the panel (b) is for synchronous solutions with
k = 0. The different curves correspond to different values of the intrinsic oscillator
frequency ω. The solid portion denote stable states and the red portion the unstable
states in panel (b).

several values of ω. In these figures, as the curves for ω = 0.8 show, it is possible to
have multiple solutions 
 for a given value of τ̄ . The stability of these higher states will
be discussed in later sections of the paper. One also notes that the lowest branch shows
frequency suppression as a function of the mean time delay τ̄ .

3. Stability of the synchronous solutions

We now examine the stability of the synchronous solutions [12], φ
,0 using the eigenvalue
equation (10) obtained in the previous section. Writing λ = λR+iλI and separating eq. (10)
into its real and imaginary parts, we get

λR = −
∫ 1

−1
G(z) cos(
|z|τm) [1 − e−λR|z|τm cos(λI|z|τm + πnz)]dz, (14)

λI = −
∫ 1

−1
G(z) cos(
|z|τm) e−λR|z|τm sin(λI|z|τm + πnz)dz. (15)

Since the perturbations u(x, t) corresponding to n = 0 again yield synchronous solutions,
the linear stability of the synchronous state requires that all solutions of eq. (10) have
λR < 0 for all nonzero integer values of n. The marginal stability curve in the parameter
space of (κ, τm) is defined by λR = 0 and in principle can be obtained by setting λR = 0
in eq. (14), solving it for λI and substituting it in eq. (15). In practice it is not possible to
carry out such a procedure analytically for the integral eqs (14) and (15) and one needs to
adopt a numerical approach, which is discussed in the next section.

To systematically determine the eigenvalues of eq. (10) in a given region of the complex
plane we use multiple methods in a complementary fashion. First, eq. (11) is solved for
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 for a given set of values of the parameters κ , ω and τm. Following that, we need to
determine the complex zeros of the function f (λ) defined as

f (λ) = λ +
∫ 1

−1
G(z) cos(
τm|z|) (1 − e−λ|z|τm e−iπnz) dz,

which is equivalent to finding solutions λ of eq. (10). To do this we have primarily relied on
the numerical technique developed by Delves and Lyness [14] based on Cauchy’s argument
principle. By this principle the number of unstable roots m of f (λ) is given by

m = 1

2π i

∮
C

f ′(λ)

f (λ)
dλ,

where the closed contour C encloses a domain in the right half of the complex λ plane
with the imaginary axis forming its left boundary. Once we get a finite number for m we
further trace the location of the roots by plotting the zero value contour lines of the real
and imaginary parts of the function f (λ) in a finite region of the complex plane (λR, λI).
The intersections of the two sets of contours locate all the eigenvalues of eq. (10) in the
given region of the complex plane. The computations are done on a fine enough grid
(typically 80 × 80) to get a good resolution. A systematic scan for unstable roots is made
by repeating the above procedure for many values of the perturbation number n and by
gradually extending the region of the complex plane. We have made extensive use of
Mathematica in obtaining the numerical results on the stability of the synchronous states.

In figure 1b the solid portion of the curve shows the stable synchronous states of eq. (3)
for κ = 2 and for various values of ω and τ̄ . The terminal point on a given solid curve
of 
 vs. τ̄ marks the marginal stability point. The marginal stability point is seen to shift
towards larger values of τ̄ as one moves down to curves with lower values of ω. A more
compact representation is obtained if one plots 
 − ω vs. 
τ̄ , as in this case the solutions
corresponding to different values of ω for a given κ consolidate onto a single curve, as
shown in figure 2 for κ = 0.05, 2 and 10 respectively.

0 1 2 3 4 5

0.0

10.0
2.0

0.05

Figure 2. Solutions of eq. (11) for the synchronous oscillation frequency for several
values of κ , plotted in terms of 
 − ω vs. 
τ̄ . Note that 
 − ω = H(
τ̄ , κ) for
the equilibrium solutions (see eq. (19)). In this representation, the different curves of
figure 1 corresponding to different values of ω collapse onto a single curve for a given
value of κ . The black portions of the curves correspond to stable synchronous states
and the red portions to unstable synchronous states.
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It is seen from both figures that the stability domains of the synchronous solutions are
restricted to the lowest branch where the curves are decreasing. This suggests a heuristic
necessary (but not sufficient) condition for the stability of the synchronous solutions: From
figure 1b we have that ∂
/∂τ̄ < 0 for stable synchronous solutions, and from eq. (11) we
calculate

∂


∂τ̄
= −
cκ I

1 + cκ τ̄ I
, (16)

where

I =
∫ 1

−1
|z|G(z) cos(cκ
τ̄ |z|)dz (17)

and

cκ = κ(eκ − 1)

eκ − 1 − κ
.

Since cκ > 0 and I is bounded, the denominator in eq. (16) is positive for small values of
τ̄ . Hence, for positive 
, the requirement ∂
/∂τ̄ < 0 implies the condition I > 0, that is,

∫ 1

−1
|z|G(z) cos(cκ
τ̄ |z|) dz > 0. (18)

An alternative approach to arrive at the necessary condition (eq. (18)) would be to make
use of the results presented in figure 2. We recast the dispersion relation given by eq. (11)
in the form


 − ω = H(
τ̄ , κ), (19)

where

H(
τ̄ , κ) = −
∫ 1

−1
G(z) sin(cκ
τ̄ |z|)dz.

It is seen from figure 2 that the stability domain of the synchronous solutions is restricted
to the lowest branch where the curves have a negative slope. This again suggests a heuristic
necessary condition for the stability of the synchronous solutions to be H ′ < 0 leading to
the necessary condition given by eq. (18). The prime indicates a derivative of H(
τ̄ , κ)

with respect to 
τ̄ .
As we shall see later, the marginal stability curve obtained from H ′ or I = 0 does lie

above the true marginal stability curve (see figure 4), confirming that condition (18) is
necessary but not sufficient for the stability of synchronous states.

The points where solid and dotted lines meet in the curves of figure 2 mark the marginal
stability point for the respective κ values. These points are obtained for a range of κ

values and are plotted in (
τ̄, κ) space in figure 3 by filled points. They all lie on a single
curve, which is analytically derived below. Our numerical results further reveal that for the
marginal stability points, the imaginary part of the eigenvalue of the mode is zero – in other
words the mode loses stability through a saddle-node bifurcation. It can easily be checked
that λI = 0 is one of the solutions of eq. (15) for any value of λR; however, it is not evident

Pramana – J. Phys., Vol. 77, No. 5, November 2011 911



Gautam C Sethia, Abhijit Sen and Fatihcan M Atay

0 2 4 6 8 10 12 14

0.6

0.8

1.0

1.2

1.4

1.6

1.8

U

S

Figure 3. The marginal stability curve (solid curve) in the (
τ̄, κ) space, obtained
from the lowest branch solutions of eq. (20) for n = 1. The filled circles correspond to
numerical results from the eigenvalue analysis of eq. (10), and show a perfect fit to the
analytical result. The dashed and dotted curves correspond to marginal stability curves
obtained for n = 2 and 3 perturbations, respectively. The symbols S and U denote stable
and unstable regions in the parameter space.

analytically that this is the only possible solution for λR = 0, and our numerical results
have helped us to confirm that this is indeed the case. Hence, putting λR = λI = 0 in
eq. (14) we get the following integral relation between the parameters 
, τm and κ:

∫ 1

−1
G(z) cos(
τm|z|) [1 − cos(πnz)] dz = 0. (20)

Further, we have also observed that the most unstable perturbation is the one with the lowest
mode number, namely n = 1. Therefore, eq. (20) with n = 1 defines the marginal stability
curve. So the condition for synchronization takes the form

∫ 1

−1
G(z) cos(
τm|z|) [1 − cos(π z)] dz > 0. (21)

0 2 4 6 8 10 12 14

0.6

0.7

0.8

0.9

1.0

1.1

0.58 0.56 0.34S

U

U
I H 0

Figure 4. A numerical fit to the marginal stability curve gives an approximate scaling
law in the form of an offset exponential relation between 
τ̄ and κ . The marginal
stability curve (solid, in black) of figure 3 has been replotted along with the fitted curve
(dashed, in blue). The dotted curve (in red) is obtained from the condition H ′ or I = 0.
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The solid line in figure 3 is the analytical curve of marginal stability defined by setting the
left side of eq. (21) to zero, and it can be seen that the numerically calculated marginal
values (represented by points) fit this curve perfectly. The figure also shows the stability
curves obtained for the n = 2 and 3 perturbations (dashed and dotted lines, respectively)
and these are seen to lie above the n = 1 marginal stability curve. We have carried out a
numerical check for a whole range of higher n numbers and the results are consistent with
the above findings.

For a system with constant delay τ (i.e. if τm|z| is replaced by τ in eq. (3)), the
cos(
τ) term can be taken outside the integral in eq. (21) and the remaining integrand
is nonnegative. Hence, the synchronization condition in this case becomes simply

cos(
τ) > 0. (22)

This agrees with the results obtained previously for constant-delay systems [5,15]. Thus our
result, as given by eq. (20), generalizes the condition (22) to systems with space-dependent
delays, and shows a nontrivial relation between the spatial connectivity and delays for the
latter case.

In order to gain some intuition into the complex interaction between connectivity and
delays, we have obtained an approximate expression for the marginal stability curve by a
numerical fitting procedure, yielding the relation


τ̄ < 0.58 + 0.56e−0.34κ (23)

for the stability of synchronous oscillations. Here, the left-hand side involves the temporal
scales of the dynamics (namely, it is the average time delay normalized by the oscillation
period of the synchronized solution) while the right-hand side involves the spatial scales of
connectivity. In this view, the synchronization condition is a balance between the temporal
and spatial scales. For high connectivity (κ → 0), the system can tolerate higher average
delays in maintaining synchrony, and the largest allowable delays decrease roughly expo-
nentially as the spatial connectivity is decreased. In the same figure we have also plotted
with dotted curve the approximate condition (18), which is found to lie above the marginal
stability curve in the entire range of κ . The disparity between the two curves becomes
particularly noticeable at large values of κ .

4. Stability conditions in the limiting cases

Since the marginal stability curve given by eq. (21) is an analytical one, one can obtain the
limiting values of the phase shifts (
τ̄ ) in the global (κ → 0) as well as in the local limits
(κ → ∞). They are given as


τ̄ <
π

2
√

2
= 1.11072 (24)

in the case of global coupling and


τ̄ <
1√
3

= 0.57735 (25)

in the case of local coupling.
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Similarly, one can obtain the limits on the frequency depression for the stability of the
corresponding synchronous state in the two limiting cases (see figure 2). In the case of
global coupling, the condition becomes


 − ω > − sin2(π/2
√

2)

π/2
√

2
= −0.722819 (26)

whereas in the case of local coupling the condition is


 − ω > −
√

3

4
= −0.4433013. (27)

We note from figure 2 that the disparity between 
 and ω (|
 − ω|) increases with
delay-induced phase shifts (
τ̄ ) and at some critical point the synchronous state becomes
unstable. The value of the disparity at this critical juncture is larger for higher connectivity
(global) and smaller for lesser connectivity (local) as we see from above.

5. Conclusions and discussion

We have investigated the existence and stability of the synchronous solutions of a con-
tinuum of nonlocally coupled phase oscillators with distance-dependent time delays. Our
model system is a generalization of the original Kuramoto model by the inclusion of natu-
rally occurring propagation delays. The existence regions of the equilibrium synchronous
and travelling wave solutions of this system are delineated. The equilibrium solutions of
the lowest branch are seen to exhibit frequency suppression as a function of the mean time
delay. We have carried out a linear stability analysis of the synchronous solutions and
obtained a comprehensive marginal stability curve in the parameter domain of the system.
Our numerical results show that the synchronous states become unstable via a saddle-node
bifurcation process and the most unstable perturbation corresponds to an n = 1 (or kink-
type) spatial perturbation on the ring of oscillators. These findings allow us to define an
analytic relation, given by eq. (21), as a condition for synchronization. We have also
obtained approximate forms for the synchronization condition that provides a convenient
means of assessing the stability of synchronous states. Our results indicate an intricate
relation between synchronization and connectivity in spatially extended systems with time
delays. A detailed analysis of the stability of travelling wave solutions is currently in
progress and will be reported later.
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