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Abstract. The matrix model of (simplified) RNA folding with an external linear interaction in the
action of the partition function is reviewed. The important results for structure combinatorics of the
model are discussed and analysed in terms of the already existing models.
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1. Installation

The improved understanding of the role of RNA in biological activities with discoveries
and developments in the field of biophysics has highlighted the importance of studying their
tertiary (folded 3D) conformations [1]. At the very base of understanding the different lev-
els of structures of these biomolecules, lies the quest for understanding three fundamental
problems (given in order): (i) to predict an RNA structure (enumeration), (ii) to find ener-
getically viable structures from the enumerated structures and (iii) to determine kinetics of
fold formation [2]. Therefore it is extremely essential to first enumerate and classify all
possible types of structures (secondary and tertiary) with a given length, i.e., to know the
combinatorics. Secondary structures of RNA have been studied successfully and widely
using different statistical and computational models, particularly dynamic programming
algorithms [3]. Tertiary structures, owing to their complexity, have been largely unacces-
sible [4]. Some models have captured the effects of pseudoknotted conformations [5] on
the combinatorial and thermodynamic aspects [6]. In particular, a graph theoretic model
by Haslinger and Stadler [7] considered bi-secondary structures (secondary structures with
non-nested pseudoknots) in addition to the secondary structures and found that the total
structures grow asymptotically as βL (where L is the length of RNA chain and β is the
constraint-dependent combinatoric factor). Hence, depending upon the different constrain-
ing conditions faced by an RNA chain under physiological conditions, the total possible
conformations may vary. This very idea springs up the thought of interesting outcomes in
the study of the effects of different kinds of perturbations/external interactions/constraints
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on the structural combinatorics of RNA in statistical modelling. With this hindsight, we
choose a statistical model of RNA folding [8] that computes and sequentially arranges
all the possible secondary and tertiary structures (according to the structural complexity,
genus) that can exist for a given length of RNA chain (here length is defined as the number
of nucleotide bases in the chain, not the geometric end-to-end distance). The enumera-
tion is made possible by some simplifying assumptions: the RNA chain is considered to be
infinitely flexible (i.e., adjacent base pairings can take place) with non-complementary base
pairings allowed and all the base pairing interactions happen with the same probability. To
this model, an external (interaction) term is added in the action of the partition function that
defines an RNA chain of length L (discussed in §2). The effect of the externally introduced
interaction [9] on the structural properties such as enumeration, distribution functions (with
respect to the length and genus of the structures), asymptotic (large L) behaviour [10] and
thermodynamic properties [11] such as (a) free energy and specific heat as a function of
length, temperature and external interaction parameter and (b) distribution of structures
with respect to temperature and different number of pairings (possible for a given length
structure) are studied in §2.

2. The model

The partition function equation of the matrix model of RNA folding with a linear external
interaction [9] is given by

ZL(N ) = 1

AL(N )

∫ L∏
i=1

dφi e
(−N/2)

∑L
i, j=1(V −1)i, j Tr φi φ j

×e−N
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i=1(W −1)i Tr φi
1

N
Tr

L∏
i=1

(1 + φi ), (1)

where the linear interaction term is e−N
∑n

i=1(Wi )
−1Tr φi . The interaction acts on i = 1, ..., n

bases of the chain where n ≤ L and Wi = w gives the strength of the external perturba-
tion which acts uniformly on each base. All the simplifying assumptions discussed in the
Introduction for the model in [8] hold. The φi s are i = 1, ..., L independent (N × N )
random Hermitian matrices placed at each of the L bases in the chain. The interac-
tion between different φi s (bases) is contained in an (L × L) interaction matrix Vi j with
Vi j = exp[−βεi jvi j (ri j )]θ(|i − j | > 4) as the elements [8]. Here β = 1/T gives the
temperature, vi j (ri j ) is the short-range space-dependent part of the attractive interaction
between nucleotides at base positions i and j , εi j is a (4×4) symmetric matrix giving base-
specific pairing energies between i and j , θ(|i − j | > 4) is the Heaviside function which
ensures finite flexibility of the chain and preserves the fact that only those bases which are
separated by at least four positions can interact. All the diagonal elements Vii = 0, i.e.,
no self-pairing is allowed. The inter-base interaction matrix in view of the simplifications
becomes Vi j = v = exp(−βε). The observable

∏
i (1 + φi ) is an ordered matrix product

over φi which also ensures that Vii do not appear in the partition function ZL(N ). AL(N ) is

the normalization constant, AL(N ) = ∫ ∏L
i=1 dφi e

(−N/2)
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i, j=1(V −1)i j Tr φi φ j e−N
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i=1(W −1)i Tr φi .
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In this construction of the partition function, the observable plays an important role. If
one adds a linear term in the Gaussian matrix model partition function (without the observ-
able) then it is just a generalization of the partition function of the scalar Gaussian field
theories to Gaussian matrix field theories. The special form of the observable incorporates
the specific properties of RNA and pulls down the Vi j s from the quadratic term in the action
to give partition functions for different lengths in terms of the base-pairing interaction v and
N (using the Wick theorem). The importance of adopting this method for enumeration of
RNA structures (though simplified) lies in that the different genus structures are arranged
sequentially in a series (of powers of 1/N 2) with proper distinction between planar (terms
with (1/N 2)0) and non-planar structures (terms with (1/N 2)k where k ≥ 1), adopted in
analogy with [12]. This facilitates the study of the distribution functions of secondary and
tertiary structures separately. Since the random matrix models give averaged and universal
properties of a system under consideration [13], this method may be very useful in getting
a handle on the average characteristics of real RNA molecules.

The generating function of the partition function, following the mathematical steps in
[9], is

G
(

t, N ,
nα

L

)
=

∞∑
L=0

ZL , nα
L
(N )

t L

L! =e
vt2
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[
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(
N
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)
(t2v)k

k!N k

]
,

(2)

where the effect of interaction appears in the exponent as e−t (nα/L). This equation can be
used to find the partition function for interaction acting on different n bases of the chain
with the strength α [9]. When the interaction is assumed to act on one (n = 1) and all
(n = L) the bases uniformly, one gets the model and its properties were studied in [10].
These cases were studied by assuming that external linear interaction strength, in the begin-
ning of the mathematical derivation, is the same on all bases in the chain (Wi = w) but it is
interesting to observe how this assumption translates into the results found for this model
(discussed in the next paragraph). Further, it is also possible to calculate the effect of inter-
action when the n different bases are acted upon by different strengths of interaction [9].
In this case, nα/L is replaced by a more complicated function, C(L , wi ), of length L of
the chain and different external interaction strengths Wi. For instance, if the interaction acts
on a single base only (base 1 in this case) with strength w1, then C(L , w1) = 1/Lw1 and for
two bases only (bases 1 and 2 with strengths w1 and w2 respectively) it is C(L , w1, w2) =
(1/Lw1) + (1/Lw2). Furthermore, if W1 = w1, W2 = w2 and W3 = W4 = · · · · = WL =
w, then C = ((Lw1w2 + ww1 + ww2 − 2w1w2)/Lww1w2). Further, the asymptotic
behaviour of the genus distribution functions for the matrix model of RNA with interaction
(n = 1 and L) in [10] is found numerically. The numerical analysis shows that the term 3L

in aL ,g,α found in [8] changes to (3−α)L when n = L (which becomes (3−(nα/L))L when
the perturbation is on n bases). The RNA structure combinatorial problem (with pseudo-
knots: only bi-secondary structures) has been solved with a graph theoretic approach in
[7]. It has been shown that the number of bi-secondary structures (secondary structures
with non-nested pseudoknots) grows asymptotically as (β)L where β is a combinatorial
factor that depends upon different constraints that an RNA chain is subject to and L is the
length of the chain. The effect of α is therefore like an added constraint in the model which
can be modelled as per requirement in different theoretical/experimental situations.
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The general form of the partition function (obtained from (1) or (2)) is

ZL ,α(N ) =
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+ ... (3)

which gives the structural regimes into which the RNA structures are distributed for the
model with linear interaction: Regime 1: 0 ≤ α ≤ 1, n < L and 0 ≤ α < 1, n = L and
Regime 2: α = 1, n = L . In the linear representation of the biomolecules, the effect of the
external linear interaction appears as a factor (1 − nα/L) (which is the multiplicative term
in the general partition function as compared to [8]) on each unpaired base of the chain
with no such distinction or weighting of the paired bases in the chain. The structures in
Regime 1 therefore consist of structures which have a combination of paired and unpaired
sites in the chain and Regime 2 has only completely paired structures which do not have
any unpaired sites at all. The matrix model formulation therefore provides a convenient
mathematical method for arranging different structures according to genus in an asymptotic
series of powers of 1/N 2 and displaying the effect of interactions very clearly. The partition
function obtained in this way characterizes the whole ensemble of structures possible for
a chosen length according to the number of pairings in each structure (power of v), genus
and the number of unpaired sites by the power of weight (1 − nα/L). The coefficients of
v give the total number of conformations aL ,g,α for a fixed L , g and α. For a given length
and α, the total possible structures for all genii are obtained by putting v = 1 and N = 1
and are labelled by N α .

This general partition function exhibits a scaling relation with the model in [8] which can
be observed by factoring out the term (1 − (nα/L))L from (3) to get ZL(v, nα/L , N ) =
(1 − (nα/L))L ZL [(v/(1 − (nα/L))2), 0, N ]. The bracketed quantity on the right side is
the partition function of the RNA matrix model in [8] where the base pairing strength
parameter v is re-scaled by an amount (1 − (nα/L))−2. Such scaling forms have not been
seen in the context of matrix theory and hence provides an interesting mathematical model
construction, both from the point of view of RNAs and matrix models. For the RNAs, the
re-scaling of v physically corresponds to changing of the base pairing interaction strength
which may be caused by external conditions such as applied pressure or proximity with
ions [14].

3. Conclusions

The matrix models of RNA folding address an important question in the basic under-
standing of biomolecules, i.e., the exhaustive enumeration of all possible conformations,
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secondary and tertiary, of a chain of any given length. Though the method adopted is
simplified and gives a schematic picture of the RNA chain, it can be used to obtain the dis-
tribution functions and universal characteristics that are found for the real RNA molecules
[15]. The study of external interactions in these matrix models of RNA has shown that the
interactions introduced in such a way act as additional constraints on the parameters of the
model. These constraints may physically imply (i) a change in the inter-base interaction
strength which may happen due to presence of ions or applied external pressure or both or
(ii) biasing the unpaired sites in the chain by assigning them a weight compared to paired
ones.

The formalism gives a systematic analytical method for studying the effect of external
interactions on the statistics and distribution of the planar and non-planar diagrams for a
given L and genus. These models are matrix models of RNA which enumerate structures
of all types that are possible for a given length of the chain. So the characteristics observed
in the distribution functions may as well be expected to be found in some real RNAs such
as the micro-RNA which are small with only 21–23 nucleotides. The results found here
(scaling etc.,) are also interesting in their own right purely from the point of view of random
matrix theory. The results found here may also be useful in understanding the structure and
dynamics of experiments with ssDNA (single stranded DNA) because the model does not
consider specificity of bases and may as well be used to understand and formulate synthetic
sequences of desired use in many situations of material science and nanotechnology.

An important and possible area of extension in these hard crust problems is to solve the
RNA heteropolymer within the same framework. Also, a useful study in solving RNA
structure combinatorics completely will be to consider real RNA sequences, construct
their base–base interaction Vi j and extract all the structure-related information (secondary
and tertiary) from this matrix itself. This is a procedure employed in the graph theoretic
approach used in complex system analysis.
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