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Abstract. We study the effect of learning dynamics on network topology. Firstly, a network of dis-
crete dynamical systems is considered for this purpose and the coupling strengths are made to evolve
according to a temporal learning rule that is based on the paradigm of spike-time-dependent plastic-
ity (STDP). This incorporates necessary competition between different edges. The final network we
obtain is robust and has a broad degree distribution. Then we study the dynamics of the structure of
a formal neural network. For properly chosen input signals, there exists a steady state with a residual
network. We compare the motif profile of such a network with that of the real neural network of C.
elegans and identify robust qualitative similarities. In particular, our extensive numerical simulations
show that this STDP-driven resulting network is robust under variations of model parameters.
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1. Introduction

Complex networks are ubiquitous in nature. Several phenomena in nature, such as brain
structures, protein—protein interaction networks, social interactions, the Internet, and so on
can be described by complex networks [1-5]. Recent developments in the understanding of
complex networks has led to deeper insights about their origin and other properties [1-5].
One common realization that emerges from these studies is that different types of networks
have different origins and there is no unifying principle. As a result, one needs to study
various possible ways to construct robust networks, and also figure out dominant factors
that give rise to specific networks.

We focus here on the structure and dynamics of neuronal networks. Progress in the
understanding of complex networks has also led to a parallel activity in the area of neural

DOI: 10.1007/s12043-011-0192-2; ePublication: 31 October 2011 817



Kiran M Kolwankar et al

networks which showed that the network in the brain possesses small-world and scale-free
properties [6,7]. Further, a network motif [8] analysis of the C. elegans neural network
showed that it belongs to one of the four superfamilies [9] of networks.

These developments lead to a natural question about the factors that determine the
observed network structure in the brain. The purpose of this paper is to review some of
our previous work [10—11] which addresses this issue. Our earlier work [10-11] showed
that the mechanism of learning, that is, the modification of the coupling strengths depen-
dent upon the dynamics of the neurons play a crucial role in determining the observed
neural network structure.

This review is organized as follows. Section 2 recalls the relevant biological findings.
We then describe different neural network models considered in §3. Section 4 discusses
our earlier results. The paper then ends with a section on concluding remarks.

2. Biological background

In the brain, neuronal networks are formed by neurons connected to each other via directed
synapses that transmit electrical signals between neurons. The potential of a neuron
changes on a fast time-scale depending on the inputs from other neurons. The strength of a
synapse determines its efficiency to transmit a signal. The dynamics of synaptic strengths
which is interpreted as learning is much slower than the dynamics of the neurons (see, e.g.
ref. [12]).

It is well known that just after birth, the brain has a very dense population of synaptic
connections and, as time progresses, most of the synaptic connections are pruned [13]. The
pruning is not restricted to larger brains but also occurs in the brain of a small worm like
C. elegans [14]. This leads to the question about the role played by learning dynamics in
determining the final neural network structure.

The neural network of the worm C. elegans is completely known [15]. Further, there
exists some variation in the neural network structure from animal to animal [16]. The neural
network of C. elegans has been studied extensively in the literature [17,18]. It was found
that perturbed sensory activity and mutations altering the calcium channels or membrane
potential affect the axon outgrowth [19] implying that the neural network is not genetically
hard wired. In ref. [6], using functional magnetic resonance imaging data, it was shown
that the functional networks in the brain have small-world and scale-free properties.

Spike-timing-dependent plasticity (STDP) is an experimentally observed biological pro-
cess that adjusts the strength of synaptic connections between neurons in the brain [20].
The process adjusts the connection strengths based on the relative timing of a particular
neuron’s output and input action potentials (or spikes). In this study, the weight of the
synaptic connection is modified by a STDP motivated rule.

3. Description of models
3.1 Discrete nonlinear map

We study the following coupled dynamical system

X1 = Gf(Xn), M
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where X, is an N-dimensional column vector representing the state of nodes in the net-
work, G is an N x N coupling matrix describing the connectivity of the network and f
is a map from Q = [0, 1]V onto itself modelling the dynamics of the node. We consider
chaotic dynamics via the logistic map defined as

Jf&x) = px(1 —x) 2

with u = 4. G;;(i # j) is the coupling strength of the edge from j to i, and we impose the
balancing condition G;; =1 — ), £j G;j. G;j = 0 signifies that there is no link from j to
i. Note that we choose G;; fori # j to be nonnegative, i.e., we do not consider inhibitory
synapses.

For the above-mentioned discrete dynamical system, the learning rule also has to be
discrete. We choose the following learning rule:

Gij(n+1) = Gij(n) + €(X;(n — DX;(n) — X;(n)X;(n — 1)), 3)

where € is a small parameter deciding the time-scale of the learning dynamics. Thus, the
strength of the connection from j to i grows when the state of j at time n— 1 and the state of
i attime n are correlated, and it decreases when the correlation switches the temporal order,
i.e., when i is active before j. Hence, this rule represents a discrete time implementation
of STDP. When two nodes are synchronized in the network, the coupling strength between
them does not change. From a different perspective, in connection with information flows
in networks, a general class of such learning rules has been considered in ref. [21].

3.2 Realistic neuronal dynamics

We have studied two realistic neuronal models using the NEST simulation tool [22]: the
leaky integrate-and-fire (LIF) model and the Hodgkin—Huxley (HH) model. The parameter
values for our simulations of the LIF model were taken from ref. [23] and that for the
HH model from ref. [24]. We do not consider inhibitory synapses which are extremely
rare between interneurons in the C. elegans network [16]. In both models, the synaptic
conductance g;(¢) is given by g; (f) = gn Z;\Izl wii ()Y, f(t —t;‘), where N is the number
of neurons, gy, is the maximum value of the synaptic conductance, w;; is the weight of the
synaptic connection from neuron i to neuron j, tj-‘ is the timing of the kth spike of neuron j.

The amount of synaptic weight modification is determined by the temporal difference At
between the occurrence of the postsynaptic action potential and the arrival of the presynap-
tic action potential via a STDP learning rule. At = t; — (#; + 7q4), where ¢; is the spike time
of the postsynaptic neuron j, 74 is the time delay of the spike transmission from neuron i
to neuron j and #; is the spike time of the presynaptic neuron i. The weight modification
Awy;; is described by the following equations:

rexp(—|At]/ty) if At > 14

Aw;i(Ar) = .
—laexp(—|At]/t-) if At < 1g,

“)

where the learning rate A = 0.0001 and w;; are constrained in the range [0, 1]. « intro-
duces a possible asymmetry between the scale of potentiation and depression and the time
constants 7, and 7_ control the width of the time window.
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4. Results and discussion

4.1 Logistic map model

To study the effect of learning on the network topology, we begin with a globally coupled
network of discrete dynamical systems described by eqs (1) and (2). The dynamics of
the coupling strengths is governed by eq. (3). We assign small nonzero initial values to
the coupling strength and allow the system to evolve for about 10’-2 x 108 time steps
depending on the number of nodes in the network. The number of nodes in the network
were taken as powers of 2, from 16 to 1024. If the coupling strength of any edge becomes
negative, then we clamp it to zero thereafter. This is pruning of the edge. We find that the
evolution leads to a steady state with a robust scale-free network.

The initial values of the edge strengths were taken to be distributed randomly (and uni-
formly) in an interval [0, gi'®*], where gi'** = 0.25/(N — 1). The value of € is much less
than g"**. In figure 1, the number of edges in the network is plotted against the number
of iterations. We see that the number of edges decreases very fast in the beginning and
then reaches a constant value. We observe that this value is of the order of the number of
nodes in the network. The strengths of the remaining edges are then unlikely to become
zero, keeping the structure of the final residual network intact. Addition of small random
noise to the learning dynamics did not affect the conclusions. Thus, it follows that as the
system evolves the coupling strength of many edges drops to zero but at the same time
some edges become stronger and their strength attains a steady value. This was found to
occur for several values of the system size as well as sufficiently small values of €.

We have studied some properties of the residual network and the robustness of the

observed properties to changes in parameter values. We have studied the frequency of

3500 |

2500

No. of edges

1500
1000

500}

0 10 20 30 40 50 60 70 8 90 100
No. of iterations/10°

Figure 1. Plot of the number of edges in the network vs. the number of iterations.

Here, we have shown the case where number of nodes is 64, ¢ = 0.001 and the number

of iterations is 107.
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different three-node subgraphs in the residual network, which yields information about the
local network structure. Out of the 13 possible three-node subgraphs or triads, only four
triads are present in the final network irrespective of the value of € and network size. If A,
B and C are three different nodes in a triad then the four observed triads are: (1) links going
out from (say) B to both A and C, (2) opposite of (1), i.e., links coming into B from both
A and C, (3) a link from A to B and from B to C and (4) a cyclic triangle. The other triads
are absent in the residual network. In particular, triads with double links, i.e., a link from A
to B and also from B to A, are absent. This is expected from the considered learning rule
since G;; + Gj; is a constant and so the strength of one link grows at the expense of the
other. Noncyclic triads are also absent in the residual network.

The most interesting outcome of this study is the final structure of the graph. We find that
though some nodes and small clusters get separated there is still a single large connected
component. In figure 2 we show the residual graph of 1024 nodes. Its scale-free nature is
evident from the broad degree distribution depicted in figure 3. Independently, Shin and
Kim [25] have also found a similar result using the FitzHug—Nagumo model.

4.2 Realistic models

In this case, we start our simulations of the STDP-driven pruning process with an all-to-all
connected network where neurons are stimulated by different periodic patterns repeatedly
with period Tpauern. We generate all the patterns from Poisson spike trains with the same
average firing rate fpoisson = 50 Hz. This average firing rate corresponds to a 20 ms spike
interval and is consistent with the width of the STDP time window. In all cases, the peak

Figure 2. The structure of the final network with 1024 nodes after 2 x 108 iterations.
Here, € = 0.00005.
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Figure 3. The degree distribution for networks with 512 nodes (blue squares) averaged
over 20 realizations and 1024 nodes (red circles) averaged over 10 realizations.

synaptic conductances and the neuron potentials are initialized with a random uniform
distribution. Most of the peak synaptic conductances are pushed toward zero or g, after
development. The threshold for synaptic pruning is set to g = 0.005 nS. We analyse the
occurrence of triads in the resulting steady-state network of the investigated LIF and HH
neuronal models.

We follow the approach outlined above to study four cases with different configurations.
We refer to the first case as ‘basic configuration’, and the other cases are variations of
the first case. In the ‘basic configuration’, we simulate a network of N = 100 LIF neu-
rons which is similar in size to the C. elegans subnetwork of somatic interneurons. An
asymmetric time window 7, = 16.8 ms and 7— = 33.7 ms was used in the STDP rule
which provides a reasonable approximation of the observed synaptic modification in actual
experiments [26]. We take ¢ = 0.525 along with the asymmetric time window resulting
in the ratio A_t_/A 7. = 1.05 similar to that in ref. [23]. We set the other parame-
ters as follows: the synaptic delay 7y = 10 ms, the maximum peak synaptic conductance
gm = 0.3 nS, and the period of input patterns Tpaern = 2 5. We also study three variations
of the ‘basic configuration’: ‘Symmetric configuration’, where the asymmetric time win-
dow is replaced with a symmetric one (r; = t— = 20.0 ms), and @ = 1.05 to preserve
the ratio A_t_ /Aty = 1.05; ‘HH model configuration’, where LIF model is replaced by
the HH model; ‘Large network configuration’, where the network size is enlarged to 200
neurons and g, = 0.2 nS. For all four cases, we repeat our simulations ten times with
different input patterns and initial values.

We have used the Mfinder software [8] developed by U Alon’s group to determine the
occurrence of three-node subgraphs in our STDP-driven networks. The abundance of each
subgraph i is quantified by the Z-score

Nreal _ (Nyand>
i = vt 7
Std(Nirand)

’

822 Pramana - J. Phys., Vol. 77, No. 5, November 2011



Learning and structure of neuronal networks

where N is the abundance of subgraph i in the real network, (N™9) and std(N)
are the mean and standard deviation of abundance of subgraph i in an ensemble of 1000
random networks generated by preserving the same number of incoming, outgoing and
mutual edges at each node compared to the real network. If z; > 0 (z; < 0) then the
subgraph i is over-represented (under-represented) and is designated as a motif (antimotif)
[8]. The significance profile (SP) of different subgraphs in a network is the vector of Z-
scores normalized to length 1:

SP shows the relative significance of subgraphs and is important for comparison of
networks of different sizes and degree sequences [9].

The SPs of triads for the four configurations mentioned earlier along with that for the
C. elegans neuronal network is shown in figure 4. It is seen that all four STDP-driven
evolved networks have very similar SPs with triads 7, 9 and 10 as motifs, and triads 1, 2,
4 and 5 as antimotifs, as in the SP of the C. elegans network which belongs to the second
superfamily reported in ref. [9]. The SP curves for the four STDP-driven evolved networks
are even more similar to the C. elegans subnetwork of interneurons. We find that this
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Figure 4. Comparison of SPs for (a) four different STDP-driven evolved networks and
(b) C. elegans neuronal networks (the subnetwork of somatic interneurons, the somatic

network, the whole neuronal network using the old wiring diagram [15]). We also show
the triad subgraph dictionary in this figure.

Pramana - J. Phys., Vol. 77, No. 5, November 2011 823



Kiran M Kolwankar et al

phenomenon does not depend on the neuron model, the symmetry of the time window or the
network size, and thus must reflect some intrinsic characteristic of STDP. Recently, it was
shown that the three motifs, feedforward loop (FFL; triad 7) and the mixed-feedforward-
feedback loops (MFFL1, MFFL2; triads 9,10) perform important neural computation and
cognition tasks in the cell providing an explanation for the abundance of these motifs in the
real network [27]. Thus, STDP can develop these important motifs abundant in neuronal
networks and characteristic of the second superfamily of [9].

There are small differences between our evolved networks and the subnetwork of
interneurons in C. elegans: triads 1, 2 and 8 have relatively lower negative SP, while triads
3 and 7 have relatively higher positive SP compared to the C. elegans neuronal network
(see figure 4). STDP tends to form feedforward structures [28] and reflect the causal rela-
tions between neurons, which could lead to over-representation of cascades (triad 3) and
FFL (triad 7), and under-representation of cycles (triad 8). On the other hand, we have
neglected other mechanisms such as short-term plasticity and hundreds of gap connections
that are present in C. elegans. The neuron models and parameter setting may also be dif-
ferent from C. elegans. Since all these factors could influence the results and have not been
accounted in the simulated models, the reported similarities between the evolved and real
networks are even more striking. In figure 5 we see that the STDP-driven evolved network
for the ‘basic configuration’ even develops a similar triad frequency spectrum as that of C.
elegans.
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Figure 5. Comparison of triad frequency spectra for STDP-driven evolved networks
and C. elegans neuronal network. (a) Subnetwork of somatic interneurons and (b)
somatic network in C. elegans. STDP-driven evolved networks in (¢) basic and (d)
large network configurations.
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5. Conclusions

We have studied the effect of a STDP-type learning rule on the structure of the neuronal
network. The investigated learning rule incorporates necessary competition between differ-
ent edges. As the network evolves, some edges grow in strength while other edges become
weak. We have considered two types of dynamics on the nodes: (a) A simple nonlinear
map, i.e., the logistic map and (b) realistic neuronal dynamics, i.e., leaky integrate and fire
(LIF) neuron and Hodgkin—Huxley (HH) models. In logistic map-based model, the edges
whose strength become zero are eliminated permanently. This is motivated by the process
of pruning in the real biological networks. In realistic LIF and HH models, the strength of
edges are allowed to become positive after becoming zero. This accounts for phenomena
like exuberance. For all the models, we obtain a residual network with robust properties.
The residual network in the case of logistic map is sparser than the one obtained in real-
istic models. However, it has a broad degree distribution, a property shared by the brain
networks.

In the residual network for LIF and HH models, three triads, FFL, MFFL1 and MFFL?2,
were over-represented compared to randomized networks. These three triads perform
important neural computation and cognition tasks. Recently, Meisel and Gross [29] have
studied the network with LIF neurons and observed that the networks robustly evolved to
a state characterized by the presence of power laws in the distribution of synaptic con-
ductances. Our focus was on the local structure of the resultant network. The SPs of
STDP-driven evolved networks are similar to that in the C. elegans neuronal network, espe-
cially, the subnetwork of interneurons. Also, the triad frequency spectrum of STDP-driven
evolved network in certain configurations is similar to that of C. elegans. The exact role
of neuronal input in determining the network structure is not yet clear but it seems some
amount of complexity is needed. This suggests that the learning dynamics plays a crucial
role in determining the network structure.
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