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Thermoelastic properties of minerals at high temperature
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Abstract. The knowledge of elasticity of the minerals is useful for interpreting the structure and
composition of the lower mantle and also in seismic studies. The purpose of the present study is
to discuss a simple and straightforward method for evaluating thermoelastic properties of minerals
at high temperatures. We have extended the Kumar’s formulation by taking into the account the
concept of anharmonicity in minerals above the Debye temperature (θD). In our present study, we
have investigated the thermophysical properties of two minerals (pyrope-rich garnet and MgAl2O4)
under high temperatures and calculated the second-order elastic constant (Cij) and bulk modulus
(KT) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (δT) as
temperature-independent and then by treating δT as temperature-dependent parameter. The results
obtained when δT is temperature-dependent are in close agreement with experimental data.
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1. Introduction

Elastic constants and their variations with temperature provide useful insight into the na-
ture of interatomic forces. Elastic properties of materials at high pressure and high tem-
perature are of great interest to researchers in many fields, such as physical sciences, earth
sciences, and material sciences. In the present study, a simple and straightforward model
theory was used to analyse the elastic constants of pyrope-rich garnet and MgAl2O4. This
theory is independent of crystal potential and thus does not involve any potential parameters.

Pyrope is the only member of the garnet family which always displays red colouration
in natural samples, and because of this characteristic it got its name. The composition of
pure pyrope is Mg3Al2(SiO4)3, although other elements are present in minor proportions.
These other elements include Ca, Cr, Fe and Mn. Suzuki and Anderson calculated Cij for
pyrope-rich garnet over the temperature range 298–993 K at irregular intervals of T . The
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specimen used by Suzuki and Anderson was a single-crystal natural garnet with compo-
sition: pyrope, 72.6%; almandine, 15.7%; uvarovite, 6.1%; androdite, 4.3%; spessartine,
0.7%; and grossular, 0.6% [1].

The class of oxide minerals includes those minerals in which the oxide anion (O2−) is
bonded to one or more metal ions. The spinels are another class of minerals of the general
formula of A2+B3+

2 O2−
4 which crystallize in the cubic (isometric) crystal system, with the

oxide anions arranged in a cubic close-packed lattice and the cations A and B occupying
some or all of the octahedral and tetrahedral sites in the lattice. A common example of a
normal spinel is MgAl2O4 [2,3]. Cynn calculated Cij for single-crystal MgAl2O4 over
the range 298–999 K at irregular intervals of T up to 1060 K, but a sudden change in
the slope of the data near 1000 K is attributed to cation disordering [4]. To analyse the
temperature dependency of elastic constants and their combinations, different relations
based on thermodynamic parameters are proposed in [5,6].

The relations for predicting the temperature dependency of elastic constants given in
[7,8] are well-known and widely used. The relations given by Suzuki et al [7] required
heavy computational work. Although these relations predict good results for variation of
volume, for elastic constants the predictions are not good. This relation has further been
simplified by Singh and Kumar [8] by considering the volume dependency of Anderson–
Gruneisen parameter (δT) in their thermodynamic analysis. They ignored the higher-order
terms, i.e. anharmonic terms, in the expansion of the logarithmic series of the volume
change and so the results obtained by these workers are not good.

In the present work we have considered the anharmonic terms and also the temperature
dependency of the Anderson–Gruneisen parameter (δT) as this concept was assumed by
Singh and Gupta [9] to explain the thermoelastic properties of MgO crystal. We have
calculated the second-order elastic constant (SOEC) (Cij ) and bulk modulus (KT) of
pyrope-rich garnet and MgAl2O4, first by taking Anderson–Gruneisen parameter (δT) as
temperature-independent and then by taking δT as temperature-dependent.

2. Method of analysis

The anharmonicity of the lattice vibration is generally due to thermal expansion in solids.
The interatomic separation increases on increasing the temperature of the solid. In the
present work we have used the modified Kumar equation, in which the anharmonic term in
the expansion of logarithmic series of the volume change with temperature is considered.

Kumar reported a relation for the relative volume change V/V0 as a function of tem-
perature under thermal pressure, using the theory of high pressure and high temperature
[10]. At P = 0, this relation leads to

V

V0
− 1 = − 1

B′
0 + 1

ln [1 − α0 (B′
0 + 1) (T − T0)] , (1)

where α0 is the thermal expansion coefficient at T0 and B′
0 is the first pressure derivative

of the bulk modulus, which can be assumed to be �δT as mentioned in [11–14]. Kumar’s
formulation is limited up to the harmonic expansion of the logarithmic series while he has
ignored the higher-order terms. At high temperature, to understand the elastic behaviour
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of solids, it is necessary to include the anharmonic terms. To explain the anharmonic elas-
tic behaviour of solids, we include the higher-order terms in the expansion of logarithmic
series, i.e. the anharmonic terms,

V

Vo
− 1 =

1
A

[
éα0A(T−T0) − 1 +

{α0A (T − T0)}3

6

]
, (2)

where A is a constant at P = 0, V = V0 and δT = δ0
T and given as A = δ0

T + 1.
Differentiating eq. (2) with respect to T and using standard definition of α, we have

finally obtained the following expression:

α

α0
=

eα0A(T−T0) + {α0A(T−T0)}2

2

1 + 1
A

[
eα0A(T−T0) − 1 + {α0A(T−T0)}3

6

] . (3)

Now assume that the product of thermal expansivity and bulk modulus will remain con-
stant. The expression for bulk modulus as a function of temperature can be written as

K

KT0

=
1 + 1

A

[
eα0A(T−T0) − 1 {α0A(T−T0)}3

6

]
eα0A(T−T0) + {α0A(T−T0)}2

2

. (4)

Thus, on generalizing eq. (4), the equation for SOEC can be expressed as

Cij

C0ij
=

1 + 1
A

[
eα0A(T−T0) − 1 {α0A(T−T0)}3

6

]
eα0A(T−T0) + {α0A(T−T0)}2

2

, (5)

where Cij represent any of the elastic moduli as C11, C12. In these equations A should
vary according to the selected elastic moduli. Here A = (δ0ij + 1) and δ0ij can be eva-
luated using the method discussed in [14].

We have considered the temperature dependence of δT as the empirical formula [9]

δT = δ0
TXk, (6)

where δ0
T is the Anderson–Gruneison parameter at T = T0, and X = (T/T0), T0 is

the reference temperature, k is the new dimensionless parameter which can be calculated

Table 1. Input parameter for pyrope-rich garnet and MgAl2O4 respectively at room
temperature, α0 (10−6 K−1) and KT, Cij (1010 Pa) [5].

Parameter α0 KT k C11 C12 C44

Pyrope-rich garnet 21.1 20.79 0.018 29.66 10.85 9.16
MgAl2O4 23.6 16.94 0.039 29.22 16.87 15.65
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Table 2. Values of δT and δ0ij at room temperature for pyrope-rich garnet and
MgAl2O4 respectively [5].

Parameter δT δ011 δ012 δ044

Pyrope-rich garnet 6.27 5.71 7.03 3.70
MgAl2O4 7.73 6.81 8.43 9.08

Table 3. Values of KT (in units of 1010 Pa) calculated from eq. (4) as a function of
temperature with experimental data [5] for pyrope-rich garnet.

Calculated in the present study

When δT is independent of When δT depends on Experimental
temp. temp.

Temperature KT KT KT

300 16.94 16.94 16.94
400 16.7 16.69 16.65
500 16.47 16.44 16.40
600 16.23 16.19 16.14
700 16.00 15.94 15.91
800 15.76 15.69 15.66
900 15.53 15.43 15.41

1000 15.3 15.19 15.16

Table 4. Values of KT (in units of 1010 Pa) calculated from eq. (4) as a function of
temperature with experimental data [5] for MgAl2O4.

Calculated in the present study

When δT is independent of When δT depends on Experimental
temp. temp.

Temperature KT KT KT

300 20.79 20.79 20.79
400 20.49 20.45 20.46
500 20.2 20.11 20.08
600 19.9 19.77 19.78
700 19.61 19.43 19.44
800 19.32 19.09 19.09
900 19.03 18.76 18.73

1000 18.74 18.42 18.44
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Table 5. Values of C11, C12 and C44 (in units of 1010 Pa) calculated from eq. (5) as
a function of temperature with experimental data [5] for pyrope-rich garnet.

Calculated in the present study

When δT is When δT depends Experimental
independent of temp. on temp.

Temperature C11 C12 C44 C11 C12 C44 C11 C12 C44

300 29.66 10.85 9.16 29.66 10.85 9.16 29.66 10.85 9.16
400 29.26 10.67 9.08 29.28 10.68 9.08 29.27 10.69 9.08
500 28.86 10.49 9.01 28.91 10.51 8.99 28.92 10.59 9.00
600 28.46 10.31 8.93 28.53 10.34 8.91 28.55 10.46 8.91
700 28.06 10.13 8.85 28.16 10.18 8.83 28.21 10.37 8.83
800 27.66 9.95 8.78 27.79 10.01 8.75 27.85 10.26 8.74
900 27.26 9.77 8.7 27.42 9.84 8.67 27.48 10.15 8.65

1000 26.86 9.59 8.63 27.04 9.68 8.59 27.12 10.03 8.55

Table 6. Values of C11, C12 and C44 (in units of 1010 Pa) calculated from eq. (5) as
a function of temperature with experimental data [5] for MgAl2O4.

Calculated in the present study

When δT is When δT depends Experimental
independent of temp. on temp.

Temperature C11 C12 C44 C11 C12 C44 C11 C12 C44

300 29.22 16.87 15.65 29.22 16.87 15.65 29.22 16.87 15.65
400 28.8 16.57 15.35 28.86 16.61 15.39 28.86 16.63 15.53
500 28.37 16.27 15.05 28.49 16.35 15.13 28.44 16.37 15.36
600 27.95 15.97 14.75 28.12 16.09 14.87 28.11 16.19 15.22
700 27.53 15.67 14.45 27.76 15.83 14.61 27.72 15.98 15.07
800 27.12 15.37 14.16 27.4 15.57 14.35 27.33 15.77 14.92
900 26.7 15.07 13.86 27.03 15.32 14.1 26.92 15.55 14.77

1000 26.29 14.79 13.57 26.67 15.06 13.84 26.60 15.40 14.61

from the slope of the graph plotted between log δT and log(T/T0). So the value of k is
defined as

k =
∂ ln δT

∂ lnX
. (7)

Using eqs (4) and (5) we can calculate the bulk modulus and second-order elastic con-
stant (SOEC) of the minerals at high temperature.
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3. Results and discussion

In the present study, we used the potential-independent model, in which the equation of
state (EOS) was modified using the concept of thermal pressure (Pth) and by taking into
account the anharmonic term in the expansion of logarithmic series for volume variation
with temperature. The anharmonic term arises because of the thermal expansion. In
this work, we have just extended the Kumar’s formulation by taking into the account the
concept of anharmonicity produced in minerals above the Debye temperature (θD). Using
eqs (4) and (5), we have thus calculated the value of bulk modulus (KT) and second-order
elastic constants (SOEC) (Cij ) of the pyrope-rich garnet and MgAl2O4, first by taking
δT as a temperature-independent parameter and then by treating δT as a temperature-
dependent parameter suggested by Singh and Gupta [9].

The values of input parameters are given in tables 1 and 2 with the corresponding
references. The calculated results in both cases are given with available experimental
data for bulk modulus (KT) in tables 3 and 4 and second-order elastic constants C11,
C12 and C44 in tables 5 and 6 for pyrope-rich garnet and MgAl2O4 respectively. It is
evident from tables 3–6 that the calculated values in the second case, in which δT is
temperature-dependent are in good agreement with the experimental value. It proves
that the Anderson–Gruneisen parameter (δT) strongly depends on temperature. The good
agreement between the calculated and experimental values of elastic constants at higher
temperature for minerals also reveals the validity of the relationship used in the present
study.
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