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Super-resolution by pupil plane phase filtering
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Abstract. Resolution capability of any optical imaging system is limited by residual
aberrations as well as diffraction effects. Overcoming this fundamental limit is called
super-resolution. Several new paradigms for super-resolution in optical systems use ‘a
posteriori’ digital image processing. In these ventures the three-dimensional point spread
function (PSF) of the lens plays a key role in image acquisition. A straightforward tailoring
of the PSF can be performed by appropriate pupil plane filtering. With a brief review of
the state-of-art in this research area, this paper dwells upon the inverse problem of global
optimization of the pupil function by phase filtering in accordance with the desired PSF.
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1. Introduction

The capability of an optical imaging system to image minute details of an object
is limited by several factors. The residual aberrations of the imaging lens severely
affect its resolving power. Even for an aberration-free objective, diffraction effects
arising out of finite aperture of the imaging objective pose a fundamental limit
for the least resolvable distance in the object/image. The Rayleigh/Abbe limit on
transverse resolution stipulates that ∆ξ, the least resolvable distance on the ob-
ject/image space is proportional to (λ/n sinα), where (n sinα) is the object/image
space numerical aperture of the imaging objective and λ is the operating wavelength
[1]. For three-dimensional objects, assuming complete absence of aberrations for
all object–image conjugates, often the above limit for transverse resolution cannot
be achieved in practice in the image of a specific transverse section of the object,
because of the overlap of the out-of-focus images of other sections of the object
on the image. This overlap causes loss in resolution and contrast in the desired
transverse image. Again, assuming aberration-free imaging over the longitudinal
range of the three-dimensional image, the diffraction limit for the axial or longi-
tudinal resolution stipulates that δζ, the least resolvable distance along the axis,
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is proportional to λ/(n sin α)2 [2]. It should be noted that both ∆ξ and δζ are
affected significantly in the presence of residual aberrations of the imaging lens.

In Fourier optics terminology the above limits are related to the upper limit of
spatial frequency in the object/image [3]. Object information above this cut-off
frequency is irretrievably lost in the process of image formation. Indeed, in image
formation, higher frequency contents of the object are propagated through evanes-
cent waves. The amplitudes of these evanescent waves decrease to an insignificant
level after propagating a few wavelengths from the object, and hence is not present
in the image.

In order to overcome the fundamental limits in resolution, scanning microscopy
techniques are now being increasingly used. For two-dimensional imaging, near-field
scanning optical microscopy (NSOM) uses recording of the diffracted pattern at a
distance, which is of the order of the working wavelength, the limiting resolution
being determined by the lateral size of the scanning spot [4]. Confocal microscopy
for imaging transverse sections of three-dimensional objects uses a two-stage imag-
ing process that uses pinholes for reducing blurs caused by out-of-focus images [5].
Recent advances in confocal microscopy, e.g. 4-Pi microscopes, make ingenious use
of dual objectives for capturing the evanescent waves also for increasing the lateral
resolution further in the desired section [6]. On the other hand, non-point scan-
ning techniques, e.g. nonlinear structured illumination microscopy are also being
investigated for capturing information in the object beyond the cut-off frequency
[7]. All these techniques extensively uses computer-aided digital image processing
techniques. One of their primary goals is to overcome the inherent diffraction limits
of optical image formation, and so, they are called techniques for super-resolution.

It is important to remember that the three-dimensional point spread function
of the objective plays a key role in determining image quality both in scanning
microscopy and non-scanning whole-field microscopy. Pupil plane filtering of the
microscope objective provides a straightforward means for achieving different types
of point spread functions. In telescopic imagery and spectroscopy, the so-called
‘apodizing’ and ‘super-resolving’ filters are used for different image quality improve-
ment purposes. In these applications no attempt is made to cross the fundamen-
tal diffraction limit, but ‘apodizing’ filters are used to increase the low-frequency
response of the system allowing a decrease of the high-frequency response, and
‘super-resolving’ filters increase the high-frequency response along with a decrease
in low-frequency response [8–10].

About half a century ago, Toraldo di Francia [11], and subsequently Boivin [12]
initiated investigations on pupil plane filtering for exceeding resolution of the imag-
ing system beyond the diffraction limit by using a set of concentric amplitude and/or
phase filters on the pupil of an image forming system. For an aberration-free objec-
tive, the two-dimensional point spread function, which is called the Airy pattern,
consists of a central lobe surrounded by a set of dark and bright rings of gradually
decreasing intensity, and the shape of the central lobe effectively determines the
least resolvable distance. Central obscuration on the pupil can make the central
lobe sharper, but concomitantly this is associated with decrease in intensity in the
centre of the diffraction pattern and increase in intensity of the neighbouring side
lobes. Thus the apparent gain in resolution obtained by reduction in size of the
central lobe is offset by the increase in intensity of the side lobes. By using pupil
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with an array of concentric annuli, the point spread function can be tailored in
a fashion such that a narrow central lobe is surrounded by neighbouring lobes of
low intensity, with one or more lobes of high intensity spaced far away from the
centre. Such PSF in scanning microscopy allows use of pinholes of smaller size
obtaining significant gain in resolution. In whole-field microscopy, such filters can
provide super-resolution beyond the diffraction limit over a small field, size of which
is determined by how far apart the large side lobes are located.

Current exigencies in burgeoning application areas like optical data storage, opti-
cal micromanipulation and high-resolution imaging have aroused considerable inter-
est in super-resolution in real time. Incidentally, it may be noted that the techniques
for super-resolution, mentioned earlier, are ‘non-real time’ operations.

Recently, many methods for designing super-resolving pupil filters have been pro-
posed, and many researchers have investigated different types of super-resolution
filters [13–30]. Although many of these filters aim at transverse super-resolution,
some of these are now directed towards axial super-resolution for catering to prac-
tical problems that call for high resolution along the longitudinal direction of the
optical axis of the imaging system. Indeed, it is possible to tailor the 3D structure
of the point spread function by using appropriate pupil plane filters. On the other
hand, different types of filters, e.g. a continuous or piece-wise continuous variation
of amplitude and/or phase of the pupil plane filters are also being explored for the
purpose. Liu and Wang [31] and Tan et al [32] have reported the application of
global optimization algorithms in designing super-resolving phase filters.

In this paper, we report some of our investigations on the design of piece-wise
continuous phase filters. In order to explore globally or quasi-globally the optimum
solutions for the problem we use an adaptation of evolutionary programming. The
next section presents a mathematical formulation for the fast and accurate eval-
uation of the PSF parameters. Our evaluation method uses a novel approach for
numerical evolution of oscillatory integrals. Section 3 deals with a brief description
of our adaptation of evolutionary programming for the purpose. Illustrative results
for optimum phase filters are given in §4. Section 5 presents concluding remarks.

2. Mathematical formulation

2.1 Axial intensity and local variance of wave aberration

For a circularly symmetric pupil with uniform amplitude the complex amplitude
on the axis of the focal plane (figure 1) is given by

FN (0) = 2
∫ 1

0

exp[ikW (r)]r dr, (1)

where W (r) is the wavefront aberration on the exit pupil of the imaging system,
the variable r is a fractional coordinate for a point on the pupil and k = (2π/λ) is
the propagation constant. Changing the variable from r to t = r2,

FN (0) =
∫ 1

0

exp[ikW (t)]dt (2)
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Figure 1. Image space of an imaging system.

FN (0) represents the normalized axial amplitude in the PSF, and is given by

FN (0) =
F (0)
F0(0)

, (3)

where F (0) is the actual amplitude of the aberrated system and F0(0) is the am-
plitude of an unaberrated system of the same numerical aperture.

For small aberrations, by neglecting terms of degree 3 and above in the Taylor
series expansion of the integrand in integral (2), FN (0) can be approximated as

FN (0) =
[
1− k2

2
(W 2 −W

2
)
]

, (4)

where

W 2 =
∫ 1

0

[W (t)]2dt (5)

and

W =
∫ 1

0

W (t)dt. (6)

(W 2−W
2
) is called the variance of wave aberration of the axially symmetric pupil.

For larger values of wave aberration, expression (4) will yield incorrect results.
But, by a modification of expression (4) using local variances over subzones instead
of total variance over (0,1), a convenient expression that remains valid for larger
values of aberrations can be obtained [33].

Assuming N subzones in t-space, FN (0) can be written as

FN (0) = 2ε

N∑
p=1

[
1− k2

2
(W 2

p −W
2

p)
]

exp(ikW p), (7)
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where width of each subinterval = 2ε = (1 − 0)/N = 1/N , N = total number of
subintervals.

W 2
p =

1
2ε

∫ tp+ε

tp−ε

[W (t)]2dt (8)

W p =
1
2ε

∫ tp+ε

tp−ε

W (t)dt. (9)

The pth subinterval has inner and outer radii of (tp − ε) and (tp + ε) respectively
where

tp =
(2p− 1)

2N
. (10)

(W 2
p −W

2

p) is the local variance of wave aberration over the pth subinterval. The
normalized intensity on the axis is given by the squared modulus of FN (0) as

IN (0) = 4ε2
N∑

p=1

N∑
q=1

[
1− k2

2
(W 2

p −W
2

p)
]

×
[
1− k2

2
(W 2

q −W
2

q)
]

cos[k(W p −W q)]. (11)

Axial intensity on transverse plane that is longitudinally shifted by ∆ζ from the
paraxial focal plane can be determined by considering this shift as defect of focus
aberration W (r) = W20r

2. W20 is related to ∆ζ by

W20 =
1
2n

(n sin α)2∆ζ (12)

(n sin α) is the numerical aperture of the imaging system and n is the refractive
index of the image space [34].

In t-space, W (t) = W20t. From eqs (8) and (9) we obtain

W 2
p =

W 2
20(3t2p + ε2)

3
(13)

W p = W20tp. (14)

Therefore, the axial intensity on the defocussed image plane is given by

IN (0) = 4ε2

[
1− ε2

6
(kW20)2

]2 N∑
p=1

N∑
q=1

cos[kW20(tp − tq)]. (15)
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(a) (b)

Figure 2. In t-space (a) an M -zone concentric equal area phase filter.
(b) jth subring in the mth equal area annular zone.

2.2 Axial intensity with concentric multizone equal area phase filters

A concentric equal area phase filter with M annular zones (figure 2a) can be rep-
resented in t-space as

Q(t) =
M∑

m=1

QmBm(t) (16)

where Bm(t) are zero-one or Walsh block functions [26],

Bm(t) = 1, for tm−1 ≤ t ≤ tm

= 0, otherwise. (17)

Suppose each phase ring is subdivided into J concentric subrings (figure 2b). For
the jth subring, the inner and outer radii in t-space are (tmj − ε) and (tmj + ε)
respectively. Each subring with tm = m/M for m = 1, 2, . . . , M of width 2ε.

2ε =
(tm − tm−1)

J
=

1
MJ

=
1
N

. (18)

For defocus W20 with a phase filter Q(t), the pupil function is given by

f(t) = exp[ikW (t)], (19)

where

W (t) = Q(t) + W20t =
M∑

m=1

QmBm(t) + W20t. (20)

Consequently, with concentric M -zone phase filter, the normalized axial ampli-
tude on a transverse plane corresponding to defocus W20 is given by
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FN (0) = 2ε

M∑
m=1

J∑

j=1

exp(ikWmj)
[
1− k2

2
(W 2

mj −W
2

mj)
]

, (21)

where Wmj , the average value of W (t) over the jth subring of the mth zone of
M -zone phase filter, is given from eq. (20) as

Wmj = Qm + W20tmj . (22)

(W 2
mj −W

2

mj) is the local variance of W (t) over the jth subring of the mth zone
of the M -zone phase filter. From eq. (20), W 2

mj is given by

W 2
mj = Q2

m + 2QmW20tmj +
W 2

20(3t2mj + ε2)
3

. (23)

Substituting from eqs (22) and (23) in eq. (20), we obtain

FN (0) = 2ε

[
1− ε2

6
(kW20)2

] M∑
m=1

J∑

j=1

exp[i{(kQm) + (kW20)tmj}]. (24)

The normalized axial intensity corresponding to the M -zone phase filter is given by

IN (0) = 4ε2

[
1− ε2

6
(kW20)2

]2 M∑
m=1

J∑

j=1

M∑

l=1

J∑
p=1

cos[(kQm)− (kQl)]

+ [(kW20)(tmj − tlp)]. (25)

For a given M -zone phase filter, the accuracy in numerical computation of In(0)
for large value of ∆ζ can be improved by increasing the integral value for J .

2.3 Far-field diffraction pattern in the transverse plane

In an axially symmetric pupil (figure 1) the far-field amplitude distribution is
given by

F (p) =
∫ 1

0

f(r)J0(pr)r dr, (26)

where the reduced diffraction variable p for points on the transverse plane is
defined as

p =
2π

λ
(n sin α)χ. (27)

χ is the geometrical distance of the point from the axis.
For a uniform transmittance Airy pupil,

f(r) = 1, for 0 ≤ r ≤ 1
= 0, otherwise. (28)
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So, from eq. (26) we get

F (p) =
∫ 1

0

J0(pr)r dr (29)

and

F (0) =
∫ 1

0

r dr =
1
2
. (30)

The normalized amplitude FN (p) is given by

FN (p) =
F (p)
F (0)

=
[
2J1(p)

p

]
. (31)

Now considering a concentric equal area phase filter with M number of annular
zones, let

f(r) =
M∑

m=1

fmBm(r), (32)

where Bm(r) are zero-one or Walsh block functions as defined earlier in eq. (17).
Assume the upper and lower radii of the jth annular ring to be rm and rm−1

respectively. The values of these two parameters are as follows:

rm =
[ m

M

]1/2

and rm−1 =
[
m− 1

M

]1/2

. (33)

Then eq. (31) becomes,

FN (p) =
F (p)
F (0)

= 2
M∑

m=1

fm

∫ 1

0

Bm(r)J0(pr)r dr

= 2
M∑

m=1

fm

∫ rm

rm−1

J0(pr)r dr. (34)

This can be expressed as

FN (p) = 2
M∑

m=1

fm=m(p) (35)

where =m(p) denotes

=m(p) =
[
rmJ1(prm)− rm−1J1(prm−1)

p

]
. (36)

In the case of phase filters having the same phase kWm over the mth zone,
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fm = eikWm . (37)

Substituting from eq. (37) in eq. (35), we obtain

FN (p) = 2
M∑

m=1

eikWm=m(p). (38)

The normalized transverse intensity distribution corresponding to the M zone phase
filter is given by

IN (p) = |FN (p)|2 = 4
M∑

m=1

M∑
n=1

[cos{k(Wm −Wn)}]=m(p)=n(p). (39)

3. Optimum phase filters by evolutionary programming

In the present work the implementation of evolutionary programming is an adap-
tation of genetic algorithm [35,36]. This consists of binary coding of the design
variables, an initial population of randomly generated chromosomes or bit strings
and evolution of this population through many generations by successive applica-
tions of the three genetic operations, namely, selection, cross-over and mutation. In
this algorithm, each individual in a population is assigned a unique fitness value Φ,
and the algorithm aims to maximize this fitness in the members of the population
in successive generations.

Fitness function Φ is inversely related to the merit function ψ by

Φ =
1

1 + ψ
. (40)

The merit function ψ is defined as the weighted sum of axial or transverse intensities
at a pre-specified set of regularly space axial or transverse points.

ψ =
D∑

d=1

ωdId, (41)

where Id is the intensity at the dth point on the axis and ωd is the corresponding
weight. Preferred intensity variations are expected to be obtained by suitable choice
of relative values of the weighting factors ωd.

For the case of M concentric zone equal area phase filters the available number
of degrees of freedom is (M − 1). Having zero phase to any one of the zones, each
of the remaining zones is allowed a finite number P of discrete phase levels over the
domain (0, 2π). Thus a particular zone can have any phase out of the P phase levels
0, 2π/P , 4π/P , . . ., (P − 1)2π/P . We implement binary coding of the variables.

Pramana – J. Phys., Vol. 75, No. 5, November 2010 863



L N Hazra and N Reza

Figure 3. Optimum eight zone concentric equal area axial phase filter.

3.1 Dynamic merit function

In order to avoid undue stagnation and slow convergence of the algorithm we ex-
perimented with ‘dynamic merit function’ by redefining the merit function, and
correspondingly the fitness function, after each iteration. For the initial popula-
tion, merit function is taken as the sum of axial or transverse intensities at 99
points corresponding to a in 0.1 (0.1) 10.0. Here a denotes the normalized axial or
transverse coordinate, depending on the problem at hand.

In subsequent generations the fittest member of the earlier generation is retained
as a member of population of the next generation (elitism). A check on genetic
diversity [37] of the population is undertaken and in the case of low diversity, the
population is reinitialized, retaining only the elite member. The merit function ψ
is redefined as weighted sum of intensities over equidistant points in three regions
along the longitudinal or transverse axis. ψ is given by

ψ =
D1−1∑

d=1

ω1Id +
D2∑

d=D1

ω2Id +
D2+5∑

d=D2+1

ω3Id. (42)

Three different weighting factors ω1, ω2 and ω3 are applied for axial or transverse
points lying in the three regions along a. The three regions consist of the central
lobe, neighbouring side lobes with low intensity and region of high intensity lying
beyond the second zone. During the evolutionary process, the shapes of these
regions change, and values of D1, D2 and the weighting factors ω1, ω2 and ω3 are
to be appropriately varied in composition of the merit function. The evolutionary
process is affected significantly by the choice of weighting factors. Numerical checks
can show that, in general, convergence is ensured when ω1 > ω2 > ω3. Details on
this stochastic optimization procedure are given in ref. [38].
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Figure 4. Optimum eight zone concentric equal area transverse phase filter.

Figure 5. Normalized axial distribution of intensity for the phase filter of
figure 3. (Black curve) optimum eight zone concentric equal area phase filter;
(red curve) uniform pupil.

4. Illustrative results

The evolutionary programming approach elucidated above for synthesising multi-
zone equal area concentric phase filters has been applied to obtain optimum phase
filters for axial as well as transverse super-resolution. As an illustrative example,
figures 3 and 4 respectively show the pictorial representations for two concentric
equal area eight zone phase filters, one each for super-resolution in the axial di-
rection and in the transverse direction. Figures 5 and 6 give the axial intensity
distribution and the transverse intensity distribution for the two filters respectively.
For comparison, the normalized intensity distributions for the Airy pupil are given
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Figure 6. Normalized transverse distribution of intensity for the phase filter
of figure 5. (Black curve) optimum eight zone concentric equal area phase
filter; (red curve) uniform pupil.

in red. In the optimization procedure for both these filters, each of the eight zones
was allowed eight distinct phase levels. The transverse super-resolving filter shown
in figure 3 uses only four phase levels out of the allowed eight levels. On the other
hand, the axial super-resolving filter uses six phase levels out of the allowed eight
levels.

5. Concluding remarks

It is significant to observe that the optimum phase filters obtained by evolutionary
programming do not use all discreet phase levels permitted in zones for these equal
area multilevel phase filters in both axial and transverse phase filters. This ob-
servation validates the conjecture that there are practical upper limits in both the
number of zones and the number of allowable phase levels in the synthesis of super-
resolving filters, beyond which no significant gain in resolution can be obtained.
Undeniably, unequal area multizone phase filters have many more effective degrees
of freedom. Investigations on such filters with prescribed programming approach
are in progress.
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