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Abstract. The Weibel instability (WI) of relativistic electron beam (REB) penetrating
an infinite collisional plasma was studied in the following models: (i) REB model, where
the total equilibrium distribution function f0(~p ) is approximated by nonrelativistic back-
ground electron and REB distribution functions and (ii) relativistic monoenergetic beam
(RMB) model, where f0(~p ) is approximated by nonrelativistic background electrons and
RMB distribution functions.

The dispersion equation including the effect of collision for a purely transverse mode
describing each model was derived and solved analytically to obtain growth rates and
conditions of excitation of the WI in the limit of high plasma temperature.

The purpose of this paper is to determine the effect of collision within the plasma on the
growth rate of the WI for the two models. It was proved that the plasma collision frequency
reduces the growth rate of WI at high plasma temperature. That is to say, collisions are
inversely proportional to the growth rate. This leads to the important result: WI can be
stabilized by increasing the plasma temperature.

Comparing the growth rate of WI in the two models (RMB and REB models), we came
to the conclusion that growth rate of WI is more in the second case (REB case).

Keywords. Weibel instability (WI); relativistic electron beam (REB); relativistic mono-
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1. Introduction

The Boltzmann equation with the relaxation model for the collision term has proved
useful, particularly, for the weakly ionized plasma [1]. The electrostatic instability
including the effect of collisions was considered previously by Vranjas et al [2].

The Weibel instability (WI) is most remarkable at the peak of the superintense
femtosecond laser pulse [3]. Yang et al [4] showed how the WI stoped when the
particles in the plasma started to gyrate in the magnetic fields (they generated
magnetic trapping).
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Nishikawa [5] calculated the emission from nonthermal electrons in the turbulent
magnetic fields generated by the WI. This instability played an important role in
generating the magnetic field in the laser-produced plasmas. It is purely growing
electromagnetic instability [6]. Intense self-generated magnetic fields are produced
by the mechanism of WI in undense plasmas. If this instability is excited, strong
(gigagauss) magnetic fields can be generated from the magnetic field due to the
electron thermal motion [6].

Lee and Lampe [7] reported the result of a nonlinear study with respect to the
WI of an REB propagating in a plasma. Shokri and Ghorbanalilu [8] showed that
the growth rate in the relativistic case was higher than that obtained for the non-
relativistic case by a factor depending on the electric field strength and the plasma
frequency.

Morse and Nielson [9] described and applied numerical simulation of the WI in
one and two dimensions. Krall and Trivelpiece [10] calculated the dispersion relation
for electromagnetic waves in a bi-Maxwellian collisionless plasma without drifts and
in the absence of beams. They have solved it to obtain growth rate and condition of
excitation of WI. We consider the same problem but with a bi-Maxwellian plasma
with drifts, collisions and in the presence of beams.

Transverse instability is a rather general name which is used for some particular
electromagnetic modes such as e.g., the WI. This instability is due to the anisotropy
of the electron velocity distribution in an unmagnetized (or magnetized) plasma
[11]. Davidson and Hammer [12] studied the wave instabilities which included
transverse electromagnetic WI driven by kinetic energy anisotropy in an unmag-
netized plasma (e.g., electromagnetic instabilities driven by thermal anisotropy or
directed counter-streaming motion).

Zaki [13] studied the excitation of electromagnetic instability for REB penetrating
an infinite collisionless plasma with drifts and in the presence of the beam. We
consider the same problem but with an infinite collisional plasma.

The purpose of this paper is to investigate the effect of electron–ion collisions on
the relativistic WI in the limit of high plasma temperature for two different models
of the equilibrium distribution functions.

2. Mathematical model

2.1 Excitation of the WI in REB model

Let us consider a homogeneous, spatially infinite collisional plasma. Ion motions are
neglected throughout this paper. The dynamics of the system under consideration is
described by the relativistic Vlasov equation with a Krook collision term combined
with Maxwell’s equations [14]:

∂f

∂t
+ ~v · ∂f

∂~r
+ q

(
~E +

~v

c
× ~B

)
· ∂f

∂~p
= −ν(f − f0), (1)

rot ~E = −1
c

∂ ~B

∂t
, (2)
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rot ~B =
1
c

∂ ~E

∂t
+

4π ~J

c
, (3)

where CGS Gaussian units are used. In these equations, f is the electron distrib-
ution function at position ~r and momentum ~p at time t, ν is the effective collision
frequency, q denotes the charge (including sign), c is the velocity of light, ~J is the
current, ~v and ~p are related by ~v = ~p/mγ, γ = (1 + p2/(mc)2)1/2, m is the elec-
tron rest mass, and ~E and ~B represent the electromagnetic field. Every quantity is
expressed in terms of its complex Fourier amplitude in a field-free plasma.

Let us now consider a current neutral beam-plasma system. The REB propagates
with the velocity ~v b

d and the plasma return current flows with velocity ~v p
d. Here we

assume the case in which an electromagnetic mode has ~K normal to ~v b
d, perturbed

electric field ~E ~K parallel to ~v b
d, and perturbed magnetic field ~B ~K normal to both

~v b
d and ~E ~K .
Consider the model where the total equilibrium distribution function f0(~p ) is

described by nonrelativistic background electron and relativistic electron beam
(REB). One finds [15]

f0(~p ) =
np

2πm(θp
xθp

y)1/2
exp

[
− (px + pp

d)2

2mθp
x

− p2
y

2mθp
y

]

+
nb

2πmγ(θb
xθb

y)1/2
exp

[
− (px − pb

d)2

2mγθb
x

− p2
y

2mγθb
y

]
. (4)

Here θx and θy are the temperature components parallel to x and y directions, pd

is the drift momentum, superscripts p and b represent the plasma electron and the
beam electron, respectively.

From the linearized Vlasov equation with the collision term (1) and using eqs
(2)–(4) , we obtain the linear dispersion equation for a purely transverse mode as
follows [10,16,17]:

1 + χL
p(k, ω) + χL

b(k, ω) =
k2c2

ω2
, (5)

where

χL
p(k, ω) = − ω2

p

ω(ω + iν)

[
1−AW (ξ)− iν

ω
(A− 1)W (ξ)

]
, (6)

χL
b(k, ω) = −ω2

b

ω2
[1−BW (η)], (7)

ω2
p =

4πnpq2

m
, ω2

b =
4πnbq2

mγ
, A =

((θp
x) + pp2

d /m)
θp

y
,
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B =
((θb

x) + pb2

d /mγ)
θb

y

, ξ =
(ω + iν)
k
√

θp
y/m

and η =
ω

k
√

θb
y/mγ

.

χL
p and χL

b are the plasma and beam linear susceptibilities, and for convenience (pp
d)2

is written as pp2

d throughout. In this investigation we have taken into consideration
the collisional effect only in the background plasma. The function W (z) is defined
as

W (z) = (2π)−1/2

∫ ∞

−∞

y

y − z
exp(−y2/2)dy. (8)

It is clear that, when the collision frequency ν = 0, eq. (5) is in agreement with
that obtained in ref. [13] for the collisionless plasma in the REB model.

The nature of the analytic solution depends, to a large extent, on the beam and
the background plasma temperatures. We obtain the following analytical solution
in the limit of high plasma temperature and high beam temperature limits, defined
as |ξ| < 1 and |η| < 1 in eq. (5). In this situation the following asymptotic
expansion for the function W (x) can be used:

W (x) = i
(π

2

)1/2

× exp(−x2/2) + 1− x2 + · · · . (9)

By using the expansion (9), eq. (5) can be approximately rewritten as

1− ω2
p

ω(ω + iν)

[
1−A

(
1 + i

√
π

2
(ω + iν)

kV p
y

)

+
iν

ω
(1−A) ·

(
1 + i

√
π

2
(ω + iν)

kV b
y

)]

−ω2
b

ω2

[
1−B

(
1 + i

√
π

2
ω

kV b
y

)]

=
k2c2

ω2
, (10)

where V p
y = (θp

y/m)1/2 and V b
y = (θb

y/mγ)1/2. In this paper, we are concerned
about the Weibel-type electromagnetic instability, so that we put

ω = iδ, (11)

where δ is the growth rate of the instability. We assume that δ and ν are all below
the plasma frequency ωp, A ≥ 1 and B ≥ 1. Inserting (11) into (10), we obtain the
equation for δ(REB) approximately as follows:

δ(REB)
∼= δ0 −

[
(A− 1) · (ν/ς)

(A/ς) + (B/ς)(ωb/ωp)2

]
, (12)

where
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δ0 = [(A− 1)ω2
p + (B − 1)ω2

b − k2c2] ·
[√

π

2
ω2

p ·
A

ς
+

√
π

2
ω2

b ·
B

ς

]−1

(13)

and ς = kV p
y , where δ0 is the growth rate in the case of collisionless case [13] in

the REB model. From eq. (12), it appeared that the effect of the plasma collision
frequency is to reduce the growth rate of WI in the limit of high plasma temperature,
i.e.,

δ(REB)

δ0
< 1. (14)

WI is appeared when wave numbers satisfy

k

[
A− 1− c2k2

ω2
p

]
>

√
π

2
B

[
(A− 1) · (ν/ς)

(A/ς) + (B/ς) · (ωb/ωp)2

]
. (15)

The maximum growth rate is obtained as

δ(REB)max
= (8/27π)1/2

(ωp

c

)

×

 (θp

x + pp2

d
m )

θp
y

+
(

ωb

ωp

)2

·
(θb

x + pb2
d

mγ )

θb
y

−
(

ωb

ωp

)2

− 1




3/2

×

 (θp

x + pp2

d
m )

θp
y

√
θp

y/m
+

(
ωb

ωp

)2 (pb2
d

mγ )

θb
y

√
θb

y/mγ



−1

−
[

(A− 1) · (ν/ς)
(A/ς) + (B/ς) · (ωb/ωp)2

]
(16)

at

k2
(REB)max

=
1
3
·
(ωp

c

)2

·

 (θp

x + pp2

d
m )

θp
y

+
(

ωb

ωp

)2

· (pb2

d /mγ)
θb

y

−
(

ωb

ωp

)2

− 1


 . (17)

In eq. (12), it is clear that when ν = 0, we get δ(REB)
∼= δ0, i.e., eq. (12) is

in agreement with that obtained in ref. [13] for the collisionless case in the REB
model. It is also clear that when ν = 0, eq. (16) is in agreement with that obtained
in ref. [13] for the collisionless case in REB model.

2.2 Excitation of the WI in RMB model

When a parallel velocity spread is not included, e.g., by replacing the bi-Maxwellian
α exp[−(px − pb

d)2/2mγθb
x] in (4), by δ(px − pb

d), one finds the model where the
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total equilibrium distribution function f0(~p ) is approximated by nonrelativistic
background electron and relativistic monoenergetic beam (RMB) [13] distribution
functions. The equilibrium distribution function in the RMB model can be written
as follows:

f0(~p ) =
np

2πm(θp
xθ

p)1/2
y

exp

[
− (px + pp

d)2

2mθp
x

− p2
y

2mθp
y

]

+
nb

(2πmγθb
y)1/2

δ(px − pb
d) exp

[
− p2

y

2mγθb
y

]
. (18)

From the linearized Vlasov equation with the collision term (1) and using eqs (2),
(3) and (18), we obtain the linear dispersion equation for a purely transverse mode
as follows:

1− ω2
p

ω(ω + iν)

[
1−AW (ξ)− iν

ω
(A− 1)W (ξ)

]
− ω2

b

ω2
[1− CW (η)]

=
k2c2

ω2
, (19)

where

ω2
p =

4πnpq2

m
, ω2

b =
4πnbq2

mγ
,

A =
((θp

x) + pp2

d /m)
θp

y
, C =

(pb2

d /mγ)
θb

y

,

ξ =
(ω + iν)
k
√

θp
y/m

and η =
ω

k
√

θb
y/mγ

.

In this investigation we have taken into consideration the collisional effect only in
the background plasma.

Equation (19) is similar to that in ref. [10] for the collisionless WI of a bi-
Maxwellian plasma without drifts and beams, in the isotropic plasma (i.e., θp

x = θp
y)

and for low plasma temperature (i.e., at |ξ| À 1) except that in ref. [10], we have:
ω2 ≈ ω2

p + k2c2, the familiar light waves in plasma.
Following the same procedure applied in the REB model, we can get the max-

imum growth rate at collisional WI of a bi-Maxwellian plasma in RMB model in
the form

δ(RMB)max
= (8/27π)1/2

(ωp

c

)

×

 (θp

x + pp2

d
m )

θp
y

+
(

ωb

ωp

)2

· (pb2

d /mγ)
θb

y

−
(

ωb

ωp

)2

− 1




3/2

×

 (θp

x + pp2

d
m )

θp
y

√
θp

y

m

+
(

ωb

ωp

)2 (pb2

d /mγ)

θb
y

√
θb

y/mγ



−1
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−
[

(A− 1) · (ν/ς)
(A/ς) + (C/ς) · (ωb/ωp)2

]
. (20)

Also, eq. (20) is similar to that in the collisionless WI of bi-Maxwellian plasma
without drifts and beams [10] except that in ref. [10], we have

δmax = (8/27π)1/2 ·
(ωp

c

)
·
(

θp
x

θp
y
− 1

)3/2

·
√

θp
y/m ·

[
θp

y

θp
x

]
. (21)

It is clear that at the beam temperature, when ν = 0 and the component parallel to
x-direction is low compared to the component parallel to y-direction, i.e., θb

x → 0
(e.g., Zayed and Kitsenko [18]) we find that eq. (16) is in agreement with that
obtained in the collisionless case in RMB model [13]. Equation (16) in the REB
model is similar to eq. (20) obtained for a maximum growth rate in the RMB model,
except that in eq. (20) the value of θb

x → 0.
From eqs (16) and (20), we find that

δ(REB)max

δ(RMB)max

> 1 (22)

i.e., comparing the growth rate of WI in RMB and REB models, we come to the
conclusion that growth rate of the collisional plasma is more in the second model.

3. Conclusion

The Weibel (or filamentation [5]) instability for REB penetrating an infinite colli-
sional plasma was studied. From the results of the analytic solution, it appeared
that the effect of the plasma collision frequency was to reduce the growth rate of WI
at high plasma temperature (as shown from inequality (14)). That is to say, colli-
sions are inversely proportional to the WI growth rate. This leads to the important
result that WI can be stabilized by increasing the plasma temperature.

On comparing the growth rate of WI in RMB and REB models, we came to the
conclusion that growth rate of the collisional plasma is more in the second case (as
shown in inequality (22)).

Results obtained in REB model (e.g. fast ignition [15]) agree with those in RMB
model (e.g., focussed beam [17]) provided that θb

x → 0 (e.g., eq. (16) in the REB
model is similar to eq. (20) obtained for a maximum growth rate in the RMB
model, except that in eq. (20) the value of θb

x → 0). Finally, to investigate the
electromagnetic instabilities in a dense plasma, one has to take into account the
collisional effect as well as the ion motion.
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