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Abstract. An auto-Bäcklund transformation derived in the homogeneous balance
method is employed to obtain several new exact solutions of certain kinds of nonlin-
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1. Introduction

There are some privileged classes of partial differential equations in mathematics,
which have very wide applications not only in physical but also in biological, chem-
ical, ecological and social sciences. Diffusion-reaction (D-R) equation is one such
equation. In fact, a variety of applications of both linear and nonlinear versions of
the D-R equation appear in a variety of contexts mainly on the basis of analogy
[1–4].

Generally, approximation methods are employed to solve these equation. In
recent years, various direct methods were proposed to find exact solutions of non-
linear partial differential equations (NLPDEs) in general. These methods include,
Bäcklund transformation (BT) [5], (G′/G)-expansion method [6,7], auxiliary equa-
tion method [8–12], exponential function method [13,14], homogeneous balance
(HB) method [15–17], variational iteration method [18–20], factorization method
[21], algebraic method [22] and Weiss approach [23]. Whereas some of these meth-
ods are of general nature in the sense that they can be employed to any NLPDE,
others are equation-specific. In this paper, using the homogeneous balance method
[24,25], some new solitary wave solutions along with the associated auto-Bäcklund

607



Ranjit Kumar, R S Kaushal and Awadhesh Prasad

transformations are obtained. According to the HB method, one assumes the solu-
tion of a given NLPDE in the form [17]

u(x, t) =
∂sf(w)

∂xs
+ u0(x, t), (1)

where f = f(w), w = w(x, t) and u0(x, t) are undetermined functions and s is a
positive integer which can be determined by balancing the highest-order nonlinear
term with the highest-order derivative term in the given equation. In eq. (1) u0(x, t)
is another unknown function which, at times, can be chosen as a constant. In this
work, we plan to investigate the exact solutions of the following NL D-R equations:

ut + cux = Duxx + αu− βu2 − γu3, (2)
ut + cux = Duxx + αun+1 − βu2n+1, (3)
ut + kuux = Duxx + αu− βu2, (4)
ut + ku2ux = Duxx + αu− βu4, (5)

ut = uxx − m

1− u
(ux)2 − u(1− u), (6)

ut + cux = ur
(
1− u

k

)
− Bu2

A + u2
+ Duxx, (7)

ut + αuux − νuxx = βu(1− u)(u− γ), (8)

where D is the diffusion coefficient, u is the concentration or density, c represents the
convective velocity, and α, β, γ, m and k are the real constants in different contexts.
Equations (2) and (3) are the generalizations of Fisher equation with reference to
nonlinearity and eqs (4) and (5) arise in situations where diffusion coefficient D it-
self becomes density-dependent [3]. Equation (6), expressed in dimensionless form,
is also known as generalized Fisher equation [26–28]. These variants of Fisher equa-
tions are found to have some close connection with some important phenomena such
as neutron action, wave motion in liquid crystal, pattern selection mechanism in
nonequilibrium physics [28,29] etc. Equation (7) appears in the context of bud-
worm population dynamics [30] and eq. (8) is known as Burgers–Huxley equation
[31] in which ν plays the role of diffusion-like coefficient. Note that eq. (8) reduces
to Hodgkin–Huxley equation for α = 0 and to Burgers equation for β = 0 (arises
in many physical problems including one-dimensional turbulence, sound and shock
waves in viscous medium etc.) [31–33]. Apart from these uncoupled equations, we
shall also study the coupled D-R equations, namely,

ut − c1ux = D1uxx + αu− βu2 − γuv,

vt − c2vx = D2vxx − µv + χuv, (9)

which basically are the generalization of the Lotka–Volterra equations of the prey–
predator system. Here u and v respectively, represent the population densities of
the prey and the predator, D1 and D2 are the corresponding diffusion coefficients.
As before, c1 and c2 now are the convective velocities of the two species, and α, β,
γ and χ are the real constants.
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2. Solutions using HB method

Solution of eq. (2)

Using the balancing procedure we obtain s = 1 for eq. (2) and for this eq. (1) can
be recast in the form

u(x, t) = f ′wx + u0(x, t), (10)

where f ′ represents derivative with respect to w. Substitution of eq. (10) in (2)
yields

D
(
f ′′′w3

x + 3f ′′wxwxx + f ′wxxx + u0xx

)
+ α (f ′wx + u0)

−β
(
f ′2w2

x + 2f ′wxu0 + u2
0

)− c
(
f ′′w2

x + f ′wxx + u0x

)− u0t

− f ′wxt − f ′′wtwx − γ
(
f ′3w3

x + u3
0 + 3f ′2w2

xu0 + 3f ′wxu2
0

)
= 0. (11)

In the spirit of HB method, one requires that the coefficients of w3
x in eq. (11) must

vanish, viz.,

Df ′′′ − γf ′3 = 0. (12)

Solution of eq. (12) is given by

f = ln(w), (13)

provided γ = 2D. For this form of f , note the relation f ′2 = −f ′′ and accordingly
set the coefficients of f ′′ and f ′ as zero in eq. (11). This yields the following set of
coupled equations:

3Dwxwxx + βw2
x + 3γu0w

2
x − wtwx − cw2

x = 0,

Dwxxx + αwx − 2βwxu0 − 3γwxu2
0 − wxt − cwxx = 0. (14)

In addition to eqs (14), an equation of the type

Du0xx + αu0 − βu2
0 − γu3

0 = u0t + cu0x, (15)

also arises when one sets the terms independent of the derivatives of f , as zero.
Equation (15) for u0 is structurally the same as eq. (2) for u implies that the BT
(1) is auto-type. Thus, for eq. (2), the defined auto-BT takes the form

u =
∂ ln(w)

∂x
+ u0(x, t), (16)

where the derivatives of w satisfy eqs (14). Now, as per the prescription of the
application of the method of BT [5] one sets u0 = 0 in (14) and obtains

3Dwxwxx + βw2
x − wtwx − cw2

x = 0,

Dwxxx + αwx − wxt − cwxx = 0. (17)

Next, for the solution of eqs (17), we make an ansatz
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w(x, t) = 1 + e(px+qt), (18)

in which the constants p and q are determined by substituting (18) in (17) as
p = (−β±

√
β2 + 8αD)/4D and q = (1/8D)[12αD+2cβ+β2∓

√
8αD + β2(2c+β)].

Thus, eq. (10) in conjunction with (13) will admit the solitary wave solution of
eq. (2) as

u =
p

2

(
1 + tanh

(
1
2

(px + qt)
))

. (19)

Solution of eq. (3)

In this case, we first make a transformation u = u1/n, which converts eq. (3) to the
form

nuut + cnuux = Dnuuxx + D(1− n)u2
x + αn2u3 − βn2u4. (20)

As the balancing procedure leads to s = 1 for this case, eq. (10) for u(x, t) can be
restored even for this case. The use of eq. (10) in (20) gives rise to

D(1− n)(f ′′2w4
x + f ′2w2

xx + u2
0x + 2f ′f ′′w2

xwxx + 2f ′′w2
xu0x + 2f ′wxxu0x)

+Dn(f ′f ′′′w4
x + 3f ′f ′′w2

xwxx + f ′2wxwxxx + f ′wxu0xx)
+Dnu0(f ′′′w3

x + 3f ′′wxwxx + f ′wxxx + u0xx)
−n(f ′f ′′wtw

2
x + f ′2wxwxt + f ′wxu0t)− nu0(f ′′wtwx + f ′wxt + u0t)

− cn(f ′f ′′w3
x + f ′2wxwxx + f ′wxu0x)− ncu0(f ′′w2

x + f ′wxx + u0x)
+αn2(f ′3w3

x + u3
0 + 3f ′2u0w

2
x + 3f ′wxu2

0)
−βn2(f ′4w4

x + 4f ′3w3
xu0 + 4f ′wxu3

0 + 6f ′2w2
xu2

0 + u4
0) = 0. (21)

Again, by equating the coefficients of w4
x in (21) to zero one obtains

D(1− n)f ′′2 + Dnf ′f ′′′ − βn2f ′4 = 0, (22)

which has the solution f = ln(w) provided β = D(1 + n)/n2. Using the relations
f ′f ′′ = − 1

2f ′′′, f ′3 = 1
2f ′′′ and f ′2 = −f ′′ and setting the coefficients of f ′′′, f ′′

and f ′ to zero as before we get the following set of equations:

−Dw2
xwxx − 1

2
Dnw2

xwxx −Dnu0w
3
x − 2Du0w

3
x +

n

2
wtw

2
x

+
nc

2
w3

x +
αn2

2
w3

x = 0, (23)

−Dw2
xx + Dnw2

xx + 2Dw2
xu0x − 2Dnw2

xu0x −Dnwxwxxx

+3Dnu0wxwxx + nwxwxt − nu0wtwx + cnwxwxx − cnu0w
2
x

− 3αn2u0w
2
x + 6D(1 + n)w2

xu2
0 = 0, (24)
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2D(1− n)wxxu0x + Dnwxu0xx + Dnu0wxxx − nwxu0t

−nu0wxt − ncwxu0x − ncwxu0x − ncu0wxx

+3αn2wxu2
0 − 4D(1 + n)wxu3

0 = 0, (25)

and an equation for u0, analogous to (20), viz.,

Dnu0u0xx + D(1− n)u2
0x + αn2u3

0 − βn2u4
0 = nu0u0t + cnu0u0x. (26)

As before, the ansatz for w, viz., w = 1 + e(px+qt) finally leads to the solution of
(3) in the form

u =
[
p

2

{
1 + tanh

(
1
2

(px + qt)
)}]1/n

, (27)

where p and q are found to be

p =
n2α

D(1 + n)

q =
−cn2α− cn3α + n3α2

D(1 + n)2
. (28)

Solution of eq. (4)

The balancing procedure for this case will suggest s = 1 and accordingly one arrives
at eq. (10) using (1). After substituting eq. (10) into (4) one obtains

D
(
f ′′′w3

x + 3f ′′wxwxx + f ′wxxx + u0xx

)
+ α (f ′wx + u0)

−β
(
f ′2w2

x + u2
0 + 2f ′wxu0

)− f ′′wtwx − f ′wxt − u0t

− k
(
f ′f ′′w3

x + f ′2wxwxx + f ′wxu0x + f ′′w2
xu0

+f ′wxxu0 + u0u0x) = 0. (29)

Now setting the coefficients of w3
x to zero in the above equations one obtains the

following equation:

Df ′′′ − kf ′f ′′ = 0, (30)

which admits the solution f = ln(w) provided k = −2D. As before, using the
relation f ′2 = −f ′′ and again setting the coefficients of f ′′, f ′ and the term inde-
pendent of the derivative of f to zero and assuming the solution of the resulting
equation as w = 1 + e(px+qt) we get the following solution of (4):

u =
p

2

(
1 + tanh

(
1
2
(px + qt)

))
, (31)

where

p =
α

β
, q =

α2D

β2
+ α.
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Equation (31) is a solitary wave solution of eq. (4). Note that for D = 1, and for
certain choices of the parameters in eq. (4), the factorization method is employed
[21] and exponential solutions are obtained.

Solution of eq. (5)

For this equation the balancing procedure suggests s = 1 and a solution u as in
eq. (10). Substituting solution (10) in (5) leads to the equation

D
(
f ′′′w3

x + 3f ′′wxwxx + f ′wxxx + u0xx

)

+α (f ′wx + u0)− f ′′wtwx − f ′wxt − u0t

− k(f ′2f ′′w4
x + f ′3w2

xwxx + f ′2w2
xu0x + f ′′w2

xu2
0 + f ′wxxu2

0

+u2
0u0x + 2f ′f ′′u0w

3
x + 2f ′2wxwxxu0 + 2f ′wxu0u0x)

−β
(
f ′4w4

x + u4
0 + 4f ′3w3

xu0 + 4f ′wxu3
0 + 6f ′2w2

xu2
0

)
= 0. (32)

Now equating the coefficients of w4
x to zero in (32) leads to

kf ′′ + βf ′2 = 0, (33)

which has the solution f = ln(w) provided β = k. Again, following the same
procedure as before, the solution of eq. (5) turns out to be

u =
p

2

(
1 + tanh

(
1
2

(px + qt)
))

, (34)

where p = 2D/k, q = 12D3/k2 and a constraining relation α = 8D3/k2.

Solution of eq. (6)

When one applies the balancing procedure in this case, one obtains s = 2 for
which the final solution does not exist. Therefore, we resort to use s = 1 – a case
investigated by Bindu et al [28] in the context of Painlevé method. This value of s
again allows us to choose the same form of u as in (10). After substituting (10) in
(6) and setting the coefficients of w4

x to zero we get the following equation:

f ′f ′′′ −mf ′′2 = 0, (35)

which admits the solution as f = ln w provided m = 2. This value of m also
conforms the one obtained by Painlevé method [28].

Solution of eq. (7)

First we recast eq. (7) in the form

ADuxx + Du2uxx + Aru− Ar

k
u2 + ru3 − r

k
u4 −Bu2

− (Aut + Acux + u2ut + cu2ux) = 0, (36)

and then use the balancing procedure which yields s = 2. This in turn, allows us
to use the form of u from (1) as
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u(x, t) = f ′′w2
x + f ′wxx + u0(x, t). (37)

As such, the solution of (36) in the present scheme of methodology turns out to be
a bit lengthy when compared with the other cases discussed above. This is mainly
because in this case when one substitutes (37) in (36), then one has to rationalize
the resultant expression until the seventh derivative of f , contrary to the earlier
cases where the maximum derivative of f turned out to be four. Therefore, in
this case one has to handle more number of equations before arriving at the final
solution in the form

u(x, t) =
3k

2
sech2

(
±

√
3k

2
(x− ct)

)
, (38)

with the constraints r = −6kD and B = 0. It is interesting to note that eq. (7)
admits the solution (38) if and only if B = 0. In fact, this reduction here appears
more in a natural way in the present procedure.

Solution of eq. (8)

Balancing procedure for this case yields s = 1, which in turn leads to the choice
(10) for u. Again, substitution of eq. (10) in (8) leads to the equation

ν(f ′′′w3
x + 3f ′′wxwxx + f ′wxxx + u0xx)− γβ(f ′wx + u0)

+β(1 + γ)(f ′2w2
x + 2f ′wxu0 + u2

0)− f ′′wtwx − f ′wxt − u0t

−β(f ′3w3
x + u3

0 + 3f ′2w2
xu0 + 3f ′wxu2

0)− αu0(f ′′w2
x + f ′wxx + u0x)

−α(f ′f ′′w3
x + f ′2wxwxx + f ′wxu0x) = 0. (39)

Setting the coefficients of w4
x to zero in (39) yields

νf ′′′ − βf ′3 − αf ′f ′′ = 0, (40)

which admits the solution f = ln w provided β = 2ν + α. Thus, using the same
procedure as before, one obtains the solution of eq. (8) as

u =
p

2

(
1 + tanh

(
1
2

(px + qt)
))

, (41)

with p = 1 and γ and accordingly q = ν − γβ and νγ2 − γβ.

Solution of eq. (9)

When one applies the balancing procedure to equations in (9), one gets s = 2 for
both the equations. This results in the following choices for u and v:

u(x, t) = f ′′w2
x + f ′wxx + u0(x, t),

v(x, t) = f ′′w2
x + f ′wxx + v0(x, t). (42)

Using eqs (42) in (9) yields the following equations:
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D1(f ′′′′w4
x + 6f ′′′w2

xwxx + 3f ′′w2
xx + 4f ′′wxwxxx + f ′wxxxx + u0xx)

+α(f ′′w2
x + f ′wxx + u0) + c1(f ′′′w3

x + 3f ′′wxwxx + f ′wxxx + u0x)
−β(f ′′2w4

x + f ′2w2
xx + u2

0 + 2f ′f ′′w2
xwxx + 2u0f

′′w2
x + 2u0f

′wxx)
− γ(f ′′2w4

x + f ′2w2
xx + 2f ′f ′′w2

xwxx + f ′′w2
xv0

+f ′wxxv0 + f ′′w2
xu0 + f ′wxxu0 + u0v0)

×(f ′′′wtw
2
x + 2f ′′wxwxt + f ′′wtwxx + f ′wxxt + u0t) = 0,

and

D2(f ′′′′w4
x + 6f ′′′w2

xwxx + 3f ′′w2
xx + 4f ′′wxwxxx + f ′wxxxx + v0xx)

−µ(f ′′w2
x + f ′wxx + v0) + c2(f ′′′w3

x + 3f ′′wxwxx + f ′wxxx + v0x)
+χ(f ′′2w4

x + f ′2w2
xx + 2f ′f ′′w2

xwxx + f ′′w2
xv0

+ f ′wxxv0 + f ′′w2
xu0 + f ′wxxu0 + u0v0)

− (f ′′′wtw
2
x + 2f ′′wxwxt + f ′′wtwxx + f ′wxxt + v0t) = 0.

After equating the coefficients of w4
x to zero separately in the above equations one

obtains

D1f
′′′′ − (β + γ)f ′′2 = 0, (43)

and

D2f
′′′′ + χf ′′2 = 0. (44)

Interestingly, both the equations in (43) admit the same solution, f = ln(w), pro-
vided (β + γ) = −6D1 and χ = 6D2. Following the same procedure as for the
earlier cases, one arrives at the constraints c1 = c2 and αχ = µ(β +γ) in a nontriv-
ial manner. For this case, eqs (9) admit the exact solution

u(x, t) = v(x, t) =
p2

4
sech2

(√
p2

4
(x + c1t)

)
, (45)

with p = ±
√

6α/(β + γ).

3. Applicational aspects

Whereas the NL D-R equations studied in this work have very wide applications in
various branches of science and engineering, here we highlight the one pertaining
to biology, particularly in the studies of cancer growth [34]. These studies may also
be useful in understanding the dynamics of tumor growth and drug response in the
organism. Martins et al [34] beautifully reviewed the possibility of such applications
of NL D-R equations.

According to the continuum growth model of cancer cells one considers a small
element of cancerous area and considers the rate of change of cells within this
element which is given by the following symbolic equation [33]:
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Rate of change of the density of cells within the element
= (Generation of cells within the element)
− (Advective outflow through its surface)
− (Diffusive outflow through its surface)
− (Death of cells in it).

In fact, the above equality follows from the mass balance principle applied to
each volume element. After translating the above mass balance principle in math-
ematical terms, one can write

∂uj

∂t
= −∇ · (~vuj)−∇ · (D∇uj) + Γ(uj)− δuj , (46)

where ~v and D as before are the convective velocity and the diffusion coefficient
respectively, Γ(u) is the proliferation term per unit volume and δ is the death
coefficient of the jth cell type population density or concentration. Note that in
eq. (45) the convective velocity ~v can be both space- and time-dependent and also
the diffusion coefficient D can be density-dependent. Further, for various nonlinear
choices of the proliferation term Γ(u) one can understand the underlying mechanism
leading to cancer growth cells. Therefore, the results obtained here (see eqs (2)–(9))
are of immediate use in such studies, particularly for a fixed-cell type population
density and constant v and D.

4. Concluding remarks

In this paper, an attempt is made to obtain exact solutions of selective NL D-R
equations (see eqs (2)–(9)) using the auto-BT as derived within the framework of
HB method. The method, employed perhaps for the first time to this category
of D-R equations, suggested several interesting features in some of the solutions
(see eqs (7) and (9)). Even though the solutions of some of the equations were
investigated in the literature in a localized space-time domain using the so-called
approximation methods [3], the exact solutions obtained here, of course by using
a common ansatz of the type w = 1 + e(px+qt), for all the nine cases consistently,
have their own beauty in mathematical terms. Note that the exact solutions of
some of the equations like eqs (6) and (8) obtained here also conform to the results
obtained earlier using other methods. Particularly, for eq. (6) the present method
confirms its integrability [28] for m = 2. Further, eq. (7) is found to admit solution
only for B = 0. It will be interesting to look for the exact solutions of some of
these equations when the parameters in an equation become time- and/or space-
dependent. Such studies are in progress.
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