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Abstract. The Schrödinger equation was solved for a generalized PT -symmetric quartic
potential in two dimensions. It was found that, under a suitable ansatz for the wave
function, the system possessed real and discrete energy eigenvalues. Analytic expressions
for the energy eigenvalues and the eigenfunctions for the first four states were obtained.
Some constraining relations among the wave function parameters rendered the problem
quasi-solvable.
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1. Introduction

In the last decade many interesting investigations on the PT -symmetric quan-
tum mechanics have generated renewed interest in the analysis of complex (non-
Hermitian) potentials [1–7]. These studies showed that a non-Hermitian Hamil-
tonian could generate real and bounded eigenvalues except when PT -symmetry
was spontaneously broken in which case its complex eigenvalues should come in
conjugate pairs. Therefore, it is now possible to investigate the eigenvalue spectra
of a number of non-Hermitian Hamiltonian systems by imposing PT -symmetric
condition.

Most of these studies, however, are restricted to one-dimensional systems and
their generalization in higher dimensions is needed for studying some nontrivial ap-
plications. With this motivation, recently we have studied a few two-dimensional
complex systems [8–10] within the framework of an extended complex phase space.
Here, with the same spirit, we found the quasi-exact solutions of the Schrödinger
wave equation (SE) for a generalized PT -symmetric complex quartic potential. In
quantum mechanics, the quasi-exact solvable systems are those for which it is pos-
sible to find a finite number of (i.e. some specific or isolated) exact eigenvalues and
the corresponding eigenfunctions in closed form. The non-Hermitian PT -symmetric
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quartic Hamiltonian, called ‘wrong sign’ Hamiltonian, is of the form

H =
p2

2m
− gx4, g > 0, (1)

and some of its variants were studied extensively in the past [7,11–15]. The Hamil-
tonian (1) is particularly interesting due to its analogy with a −φ4 quantum field
theory to model the dynamics of Higg’s sector of the Standard Model. But the
main difficulty with (1) is that the wave functions do not vanish exponentially as
|x| → ∞, but oscillate on positive and negative real x-axes. However, when a cubic
term iλx3 is added to (1), the wave functions decay exponentially on real x-axis and
also in the interior of the Stoke’s wedges. Thus, the presence of the imaginary cubic
term in (1) enables one to calculate the C-operator perturbatively which is essential
to develop a consistent quantum theory to deal with non-Hermitian Hamiltonians.

Although there are various ways for obtaining complex Hamiltonians [16,17], in
the present work, a complex quartic Hamiltonian is derived by choosing potential
coupling parameters as complex. The same scheme of complexification was used
in [18] also for studying a family of one-dimensional complex PT -symmetric sextic
potentials [10,19,20].

There are several methods for solving the SE for dynamical systems [21,22]. A
technique known as the ansatz for the eigenfunction method, however, has been
explored for obtaining ground and excited state energies of a variety of real po-
tentials [23–26]. Very recently, Midya and Roy [27] investigated the quasi-exact
solutions of the position-dependent mass Schrödinger equation for one-dimensional
sextic potential using this technique. The same method was successfully used to
obtain the eigenvalue spectra of a number of non-Hermitian complex potentials also
[6,8–10,28].

The study of non-Hermitian Hamiltonians demands special attention because
of their interesting applications in several areas of theoretical physics like super-
conductivity, population biology, quantum cosmology, condensed matter physics,
quantum field theory, and so on [7].

The organization of the paper is as follows: in §2, a brief account of the main
working steps of the eigenfunction ansatz method is presented. In §3, the expres-
sions of the energy eigenvalues for the first four states for a general two-dimensional
coupled quartic complex potential are obtained. Finally, the concluding remarks
are presented in §4.

2. The method

Here, we describe the essential steps of the ansatz for the eigenfunction method for
obtaining the solutions of the SE for two-dimensional systems.

The SE is written (for ~ = m = 1) as

∂2ψ

∂x2
+

∂2ψ

∂y2
+ 2(E − V (x, y))ψ(x, y) = 0. (2)

Next we make an ansatz for eigenfunction of the form

ψ(x, y) = φ(x, y)e−g(x,y). (3)
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On substituting eq. (3) in eq. (2), we obtain

gxx + gyy − (gx)2 − (gy)2 + 2(E − V )

+
1
φ

(−2φxgx − 2φygy + φxx + φyy) = 0, (4)

where the subscripts indicate the differentiation with respect to the variables x
and y.

From the above equation, it is clear that if the functions g and φ are known for
a given system, then rationalization of eq. (4) would directly provide the energy
eigenvalues and eq. (3) would then act as the wave function for the system. How-
ever, the results for the ground state can be obtained by setting φ(x, y) = constant.
Therefore, for the ground state solutions, eq. (4) reduces to

gxx + gyy − (gx)2 − (gy)2 + 2(E − V ) = 0. (5)

Hence, to implement this scheme to solve SE for a specific potential, a few suitable
forms of g(x, y) and φ(x, y) are required. For polynomial type of potentials, these
may be assumed polynomials as well.

So in the next section we consider a two-dimensional coupled quartic potential
and find its eigenvalue spectra under a suitable ansatz for eigenfunction by solving
eq. (4).

3. Solutions for PT -symmetric quartic potential

Let us consider a general two-dimensional coupled quartic complex potential

V (x, y) = a10x + a01y + a20x
2 + a02y

2 + a11xy + a30x
3

+ a03y
3 + a12xy2 + a21x

2y + a22x
2y2 + a31x

3y

+ a13xy3 + a40x
4 + a04y

4, (6)

where aij are constants. The potential (6) will be PT -symmetric, if a10, a01, a12,
a21, a30, a03 ∈ i< and a20, a02, a11, a22, a31, a13, a40, a04 ∈ <.

For the present system, the ansatz for the function g(x, y) is made as

g(x, y) = α10x + α01y + α20x
2 + α02y

2 + α11xy

+ α12xy2 + α21x
2y + α30x

3 + α03y
3, (7)

where the coefficients α10, α01, α12, α21, α30, α03 ∈ i< and α20, α02, α11 ∈ < are
chosen to ensure the PT -symmetry of the wave function.

Now, to solve the SE for the potential (6), in the following subsections, we assume
the polynomial forms of φ(x, y) for the first four states.

3.1 Ground state solutions

For the ground state solution, φ(x, y) = 1. Thus, using eqs.(6) and (7) in eq. (5)
and on rationalization, we get the following set of algebraic equations
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E = α02 + α20 − 1
2
(α2

10 + α2
01), (8)

a01 = α10α11 + 2α02α01 − 3α03 − α21, (9)

a10 = α01α11 + 2α20α10 − 3α30 − α12, (10)

a12 = 4α02α12 + 3α11α03 + 2α20α12 + 2α11α21, (11)

a21 = 4α20α21 + 3α11α30 + 2α02α21 + 2α11α12, (12)

a11 = 2(α20α11 + α02α11 + α21α10 + α01α12), (13)

a22 = 2α2
21 + 2α2

12 + 3α12α30 + 3α21α03, (14)

a02 = 3α03α01 + α10α12 + 2α2
02 + α2

11/2, (15)

a20 = α21α01 + 3α30α10 + 2α2
20 + α2

11/2, (16)

a03 = 6α02α03 + 2α11α12, (17)

a30 = 6α20α30 + 2α11α21, (18)

a31 = 6α21α30 + 2α12α21, (19)

a13 = 6α12α03 + 2α12α21, (20)

a40 = (9α2
30 + α2

21)/2, (21)

a04 = (9α2
03 + α2

12)/2, (22)

among the potential coupling parameters, wave function parameters and the energy
E. The above equations provide solutions of potential parameters aij in terms of
the wave function parameters αij . Therefore, for various choices of αij , different
aij will be obtained. In this way one can obtain the eigenvalue spectra of a family
of complex quartic potentials in two dimensions. Note that the energy eigenvalue,
eq. (8), is real as α20, α02 ∈ <.

It is worth mentioning that the potential (6) essentially forms a two-dimensional
quartic ‘wrong sign’ Hamiltonian because the potential coefficients a31, a13, a40 and
a04 (eqs (19)–(22)), are negative numbers as α12, α21, α03 and α30 are assumed
imaginary constants.

3.2 First excited state solution

Now we consider the second case, for which φ(x, y) is given as

φ(x, y) = x + y + γ1, (23)
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where γ1 is a complex constant. So, using eqs (6), (7) and (23) in eq. (4), we get a
set of 17 equations out of which 12 equations are the same as given by eqs (11)–(22)
and the remaining five equations are written as

E = γ1(α21 + a01 + 3α03 − α10α11 − 2α10α02)
+α20 + α11 − α2

10 + 3α02, (24)

E = γ1(α12 + a10 + 3α30 − α10α11 − 2α10α20)
+α02 + α11 − α2

10 + 3α20, (25)

E = (α20 + α02 − α2
10)− 2α10/γ1, (26)

a10 = −α12 − α21 − 6α30 + α11α01 + 2α10α20, (27)

a01 = −α12 − α21 − 6α03 + α11α10 + 2α01α02. (28)

Here, we get three relations for energy E. These expressions will provide unique
and real energy eigenvalues when

α01 = α10, α20 = α02, α12 = α21 = −3α30 = −3α03. (29)

Thus under these restrictions, the energy eigenvalue E and the value of γ1 are
computed as

E = 4α20 + α11 − α2
10, (30)

γ1 =
−2α10

α11 + 2α20
. (31)

Note that the energy is real and discrete as α20, α11 ∈ <.

3.3 Second excited state solutions

For obtaining the energy eigenvalues of the second excited state of the system (6),
we take the third choice of φ(x, y) as

φ(x, y) = x2 + y2 + a3xy + a2x + a1y + a0, (32)

where a0 and a3 are real numbers while a1 and a2 are pure complex constants.
Again inserting eqs (6), (7) and (32) in eq. (4), we obtain a set of 20 algebraic

equations. Out of these, six relations involving energy and two for a10 and a01

are different from eqs (11)–(22). The six relations involving E provide the energy
equation as

E = 6α20 + 2α11 − (α2
10 + α2

01)/2, (33)

under the same condition (29). The coefficients a0, a1, a2 and a3 are calculated as
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a0 =
(2α20 + α11) + (α01 + α10)2

(2α20 + α11)2
, (34)

a1 = a2 =
α10 + α01

α20 + α11/2
, a3 = 2. (35)

Here also the energy eigenvalues are real and discrete.

3.4 Third excited state solutions

Finally, for obtaining the energy eigenvalues of the third excited state of system
(6), the fourth choice of φ(x, y) is made as

φ(x, y) = x3 + y3 + β21x
2y + β12xy2 + β11xy

+ β20x
2 + β02y

2 + β10x + β01y + β0, (36)

where β11, β20 and β02 are the real numbers whereas β21, β12, β10, β01 and β0 are
complex constants.

Inserting eqs (6), (7) and (36) in eq. (4), we obtain a set of 24 algebraic equations.
Out of these, ten equations involving energy and two for a10 and a01 are different
from eqs (11)–(22).

These ten relations involving E again reduce to a single energy equation

E = 8α20 + β21α11 + β11α21 − 12α30 − α2
10, (37)

under the restriction (29). Further, the solutions of various βij in terms of αij may
be obtained by selecting β21 = β12, β20 = β02 and β10 = β01 = 1. The coefficients
β20, β21, β11, β0 are given as

β20 =
16α20 + 2α11(8 + α−1

30 ) + 3
12α30 + 2α10 − 18

, β21 = 3. (38)

β11 =
−3
4
− α11

2α30
+

9(16α20 + 2α11(8 + α−1
30 ) + 3)

4(6α30 + α10 − 9)
, (39)

β0 =
2α10 − 2β20

6α20 + 3α11 + β11α21 − 12β20α30
. (40)

Here also, the energy eigenvalue is real and discrete.

4. Conclusions

In this work, we have calculated the energy eigenvalues of a general two-dimensional
PT -symmetric coupled quartic potential using an ansatz for the wave function.
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The SE is rationalized for suitable forms of g(x, y) and φ(x, y). The parameters of
potential and φ(x, y) are expressed in terms of g(x, y) parameters. This can provide
a number of coupled quartic potentials for various choices of g(x, y) parameters
αij . The energy eigenvalues are computed for the first four states. By considering
higher-order polynomials for φ(x, y), other higher excited state solutions for the
quartic potential can be computed but expansion of algebra makes the calculations
difficult. The eigenvalue spectra are found to be real and discrete. The solutions
found in this study are exact with certain constraints on the potential parameters
(see eq. (29)).
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