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Chemical potential and internal energy
of the noninteracting Fermi gas
in fractional-dimensional space

S PANDAY™ and B K PANDA?

"nstitute of Mathematics and Applications, Surya Kiran Building, Saheed Nagar,
Bhubaneswar 751 007, India

2Plot-297, Behera Sahi, Nayapalli, Bhubaneswar 751 012, India

*Corresponding author

E-mail: sudhira@iopb.res.in; bpanda@iopb.res.in

MS received 11 May 2009; revised 17 January 2010; accepted 6 April 2010

Abstract. Chemical potential and internal energy of a noninteracting Fermi gas at low
temperature are evaluated using the Sommerfeld method in the fractional-dimensional
space. When temperature increases, the chemical potential decreases below the Fermi
energy for any dimension equal to 2 and above due to the small entropy, while it increases
above the Fermi energy for dimensions below 2 as a result of high entropy. The ranges
of validity of the truncated series expansions of these quantities are extended from low to
intermediate temperature regime as well as from high to relatively low density regime by
using the Padé approximant technique.
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1. Introduction

The chemical potential is a fundamental quantity in statistical mechanics which
characterizes the many-particle systems in thermal equilibrium [1]. In the second
law of thermodynamics, the change in total energy (dU) of the system exchanging
the number of particles (dN) with the reservoir at a temperature (7") and under
pressure (p) is given by dU = T'dS — pdV + pdN, where dS is the change in
entropy by 7', dV is the change in volume by p and p is the chemical potential.
When S and V of the system are fixed, u is defined as
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In the ground state, S vanishes and p is obtained under the condition that the
number of particles in volume V' does not depend on temperature [2]. The chemical
potential is the energy necessary to add one particle to the system without changing
both the entropy and volume. The quantum theory in solids and low-dimensional
systems is essentially the physics deduced from the ideal Fermi gas model where
the physical properties at a finite temperature are expressed in terms of the Fermi—
Dirac distribution function characterized by pu.

Various techniques are described in the literature for evaluating g of the non-
interacting Fermi gas at low-temperature limit. In 1928, Sommerfeld [3] obtained
1 as a low-temperature expansion in the three-dimensional systems. This method
is not correct for an arbitrary value of u/kgT (kg is the Boltzmann constant) [2]
because this method omits the term exp(—u/kpT') in the calculation. However, this
method is accurate in the low-temperature limit as exp(—p/kgT’) vanishes in this
limit. Furthermore, the Sommerfeld method can be easily extended to calculate
several ground state properties of the free fermion gas using the thermodynamic
relations [2]. Both p and U in 3D were calculated up to order T by Kiess [4] and
up to order T® by Aguilera-Navarro et al [5]. The only limitation of the Sommer-
feld method is that it cannot be used for two-dimensional (2D) systems. However,
the evaluation of p and U in the 2D system is analytic and the expressions for
these quantities are obtained in closed forms [6]. The other two procedures are the
Cauchy’s integral method [7] and polylogarithm method [8]. The results obtained
in these methods are identical to those obtained in the Sommerfeld method.

The standard Padé approximant technique is well known for reproducing the
correct behaviour of a function for which only a few terms are available [9]. In this
technique, the truncated series is expressed as a ratio of the two polynomials of
finite sizes so that the ratio is convergent. Using this method, the truncated series
of p and U valid in the low-temperature and high-density regimes are extended to
intermediate-temperature and low-density regimes [5].

The multidimensional space method serves as a model for studying the dimen-
sional dependence of the physical properties. For example, the properties of polaron
are obtained as a function of n, an integer specifying the dimension [10]. The eval-
uation of 4 and U in this space has been attempted by Cetina et al [6] using the
series expansion method. It is more elegantly evaluated using the Cauchy’s contour
integration method [11] and the polylogarithm method [8]. All these methods are
found to give identical results. In addition to these, the polylogarithm method
in this space was employed to calculate p in the one-dimensional (1D) [12] and
zero-dimensional (0D) [13] systerms.

The quantum well and quantum wire fabricated using the semiconductor hetero-
junctions are 3D systems with embedded 2D and 1D structures, respectively. In
1986, Ishida [14] theoretically noticed the dimensional cross-over of the plasmon
from 2D to 3D when the well width of the quantum well is increased. A narrow
quantum well has only one level occupied by the electron so that the system man-
ifests 2D behaviour. However, the level separation decreases with the increase of
the well width so that higher and higher levels are occupied by electrons. When
the well width is very large, the system shows 3D behaviour. Consequently, the
system shows fractional-dimensional (FD) behaviour with the dimension varying
between 2 and 3 when the well width is finite. Similarly, the quantum wire with
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finite internal area shows FD behaviour with its dimensionality varying between 1
and 3.

The FD space is termed as dynamic space which differs from the geometric space
in that its dimensionality is determined by physical interactions as seen from the
viewpoint of the excitation dynamics. The formalism for calculating the physi-
cal properties in the FD space was introduced by He [15]. The anisotropic low-
dimensional space in 3D structures becomes isotropic in the FD space and the
dimension provides a measure for the degree of anisotropy in the actual physical
system. The dimension is determined from the extension of radius of bosons such
as exciton [16], polaron [17], exciton—polaron [18] and plasmon [19] with respect to
the well width in quantum well and the square root of the internal area in quantum
wire [20]. The quasi-2D layered structures of high-temperature superconducting
thin films are actually not 2D objects, but fractals with Hausdorff dimensionalities
between 2D and 3D in the real laboratory situation [21,22]. The formalism of He
[15] has been used to describe the superconductivity [23] and the transport proper-
ties in fractals [24]. An accurate evaluation of y is necessary to find the temperature
dependence of the excitation spectra in these systems.

In the present work, we have used the Sommerfeld method to find p and U in FD
space at low-temperature and high-density limits. Finally, the results are fitted to
Padé approximant forms to extend their validity to intermediate-temperature and
low-density limits.

2. Method of calculation

Recently, we have derived an interpolating formula for y of the noninteracting Fermi
gas in the FD space valid in the high-temperature limit at an arbitrary density of
particles [19]. In the present work, we will present the derivation of p valid for
low-temperature and high-density limits only. The number of particles is defined
as

1
N=2) e )+ 1 (2)

where €, = h?k?/2m* is the energy variable with m* being the effective mass of
the particle and the factor 2 accounts for the spin degeneracy.
The internal energy is defined as

— €k
V=22 il D)+ T @

In the FD space, k is not a vector space and the coordinates in this space are
termed as pseudocoordinates [25]. The vector operations are not allowed in this
space. Since the FD space is taken as isotropic in the method of calculation [25],
the sum over k can be transformed into integral over positive k as
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where V' is the volume in FD space and I'(z) is the Euler’s gamma function. This
transformation is also the same as in the multidimensional space where « is replaced
by n. This transformation is not valid for the 1D system since I'(0) = co. However,
such a transformation can be used when o — 1. This formalism can be applied to
quantum dots [13] since I'[(ac — 1) /2] = —2/7 when a = 0.

At T =0, using eq. (4) in eq. (2) and carrying out the integration over 0, we
find

b 2)/2
p= 2p0/ eEfW )2 dey,, (5)
0

where the density of particles p = N/V and py = (m*/27h?)*/2/T(a/2). Here
I[(aw—1)/2] in eq. (5) gets cancelled after § integration except when av = 1. There-
fore, this method raises the validity of the previous work on the applicability of
the multidimensional space method to 1D system [12]. Carrying out the trivial
integration in eq. (5), we find the expression for Fr as

b (op )\ _ B (Um) T+ 5)p e (©)
B \4po ~ omr 2 ’

It is clear that kp = ((47)*/2T'(1 + «/2)p/2)/*. For T # 0, p is obtained as

o 6](:4—2)/2
=2 dey.. 7
P ”A oxp((er, — p)/kT) + 1" ™

For o = 2, the integration in eq. (7) is carried out exactly to obtain,

p=2p0 [u—l—kBTlog{l-l-exp(k:T) H (8)

The Fermi energy is calculated as

Ex =u+kBTlog[1+exp(kMT>} (9)
B

It is easy to invert eq. (9) to find p as [6]

B BT e - R
EF—l-l- o log[l exp( k;BT>} (10)

2.1 Sommerfeld method

For o # 2, p can be obtained by using the method of Cetina et al [6]. Taking the
low-temperature expansion in powers of kgT, p is obtained as [1,6]
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where ((z) is the Riemann zeta function. This is the Sommerfeld expansion for
density. The Fermi energy is calculated as

a—2(mksT\> (o—2)(a2—25a+74) (wksT\"
Ep=p|l
L R ( ) * 1440 1
| (0= 2)(da* — 2590% + 441907 — 239960 + 41252) (mhiT 6
362880 [

(o —2)(18a8 — 2167a° + 81924a* — 130340903
+9638270a? — 33428844 + 44072968)

87091200

WkBT>

X (12)

For finding p when « # 2, the inversion of eq. (12) is carried out using the isotherm
approach. In this approach the number of particles does not depend upon temper-
ature at a given volume. Therefore, Er is independent of temperature,

OF
(OTF> =0. (13)
14

A series expansion of i/ Er in terms of kgT/FEF is taken as
4 6 8
1% kB kBT kBT kBT
r ~BL B ~B2 o
Er +‘”(fEF> +a“(EF “\ By W\ g ) T
(14)

where aso, a4, etc. are the coefficients of expansion. The coefficients of odd powers

of T vanish since Er contains only even powers of T'. These coefficients are easily
obtained as

_ (a—=2)n?
az = 12 )
(a—2)(a—6)(a—9)7?
g = — 5
1440
o la=2)(a - 4.2231)(a — 8.6476)( — 10)(a — 20.8794)7°
6 90720 ’
(a — 2)(a — 4.0247) (o — 6.3142) (v — 9.5286)
x(a — 14)(a — 14.8860) (v — 37.9687) 7>
- . (15)
4838400
For quantum wire, it has been derived earlier [26] that u/Ep = 1 +

(72/12)(ksT/Er)%. Our derivation reproduces this, however, at o — 1. For a > 2,
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we find that u/Er decreases with T'. On the other hand, for a < 2, p/ Fy increases
with 7" which is unphysical as u/Er — oo when T — oo. Grether et al [27] have
shown that p/Ep increases in the low-temperature limit and then becomes negative
at T'— oo with a hump in the intermediate temperature limit.

The internal energy U can be calculated using the general thermodynamic rela-
tionship [4]

ou ou
(a+2)U—2T(> —ozN,u—|—aNT<> =0. (16)
T )y n o)y n

A series expansion of U in terms of even powers of kgT'/FF is taken as

B kpT\” kpT\*
UU0|:1+A2(EF> +A4( EF >

kpT\° kT ®
+A6(EF> +A8<EF> +oee (17)

where Uy is the internal energy at T' = 0 and As, A4 etc. are the coefficients to
be determined. These coefficients are obtained by substituting eqs (17) and (14) in

eq. (16),

Uy = aNEp/(a +2),

2
A — (a+2)m ,
12
(a@+2)(a—2)(a—9)r*
A4 - ’
480
A (a+2)(a —2)(a —4.2231)(a — 8.6476) (v — 20.8794) 7S
6 — )

18144

T(a+ 2)(or — 2) (o — 4.0247) (v — 6.3142)
A { x (o — 9.5286) (v — 14.8860) (e — 37.9687) 7" }
8

691200

(18)

Substituting Er = (aN/4noV)?/ in eq. (17) and using eq. (1), we can obtain
eq. (14). The internal energy increases for all a.

2.2 Padé approximant method

We find that the truncated series for g and U correctly finds the low-temperature
limit of the numerical method. We need to express the series as a ratio of two finite-
sized polynomials in the Padé approximant technique for extending their validity
to intermediate temperature and relatively low-density regimes. This method has
been described by Baker [9]. As pointed out earlier, this method has been applied
to truncated series of 1/ Er and U/Uy in 3D containing terms up to the 8th power
of T [5], where different Padé approximant forms have been fitted to the series
expansions. Among three different forms, [0/3], [2/1] and [1/2], [0/3] form has
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been found to be the best. In order to include ag term in the fitting, the entire
series in the present work is expressed in terms of [0/4], [1/3], [2/2] and [3/1]
forms and it is found that [1/3] is the best among them. Using this form, u/Fp is
expressed as

no_ 1+ pa(ksT/Er)?
Er 14 qo(ksT/Er)? + qu(ksT/Er)* + qs(ksT/Er)®’

(19)

where the coefficients are obtained using the Mathematica package [28] as pa = (a3—
3a2ay +a2+2asa6 —ag) /A, o = (a3 —adas +asas —ag) /A, qu = (a5 —aday+asas —
ag)/A and gg = (—a3 + 2aza4a6 — a2 — adag + asag) /A, where A = a3 — 2aza4 + ag.
These coefficients are evaluated using eq. (15).

Similarly, U is expressed in the [1/3] Padé approximant form as

U _ 1+ Py (ksT/Er)*
Uo 1+ Qs (ksT/Ep)* + Q4 (ksT/Ex)® + Qe (kzT/Ep)®’

where Py, Q2, Q4 and Qg are related to As, Ay, Ag and Ag as in u/kpT.

(20)

3. Results and discussions

We have calculated p/Er as a function of kgT'/Er numerically at a constant den-
sity for a = 1.01, 1.5, 2.5 and 3 and compared them with those obtained in the
Sommerfeld and Padé approximant methods in figure 1. The numerical results also
show similar behaviour as in the other two methods at extremely low-temperature
limit. For o > 2, we find that u/FEr decreases with T. On the other hand, for
a < 2, u/Ew increases with T' which is unphysical as u/Er — oo when T — oc.
Grether et al [27], in the numerical method, have shown that u/Ep increases in
the low-temperature limit and then becomes negative at T — oo with a hump
in the intermediate temperature limit. The overall behaviour of the temperature
dependence of p in 3D has been described by Cook and Dickerson [29]. At zero
temperature, the system is in the ground state with zero entropy. At a small T" the
sharpness of the edge of the Fermi surface is lost. In the Sommerfeld expansion
method the entropy up to order 7% in FD space is obtained as

S _ 7 (ksT 1+(a—2)(a—9)ﬂ'2 ksT 2+.__
aNks 6 \ Ep

20 Ep
It is clear that the second term is negative for a@ > 2 and it is positive for o < 2.
As the temperature rises, the total internal energy of the system increases and
some of the fermions begin to occupy excited states. In order to keep entropy as
zero, the added fermions for av > 2 must go into the low-lying vacant single-particle
states little below Eg left open by the excited fermions. The number of available
microstates must be minimized by cooling the gas. The change in internal energy
of the Fermi gas must be positive, but a little below Er. As the temperature
increases, more of the low-lying states become vacant. To add a new particle

(21)
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Figure 1. Chemical potentials scaled with respect to Fermi energy as a
function of thermal energy scaled with the same Fermi energy for a = 1.01,
1.5, 2, 2.5 and 3. The chemical potentials calculated in the numerical method
are compared with those estimated in the series expansion method and Padé
approximant methods. In the numerical method: closed circles (o = 3), open
circles (o = 2.5), closed squares (a = 2), closed triangles (o = 1.5) and open
triangles (o = 1.01). In the series expansion and Padé approximant methods:
solid line (« = 3), dashed line (a = 2.5), dotted line (« = 1.5) and dot-dashed
line (@ = 1.01). Here thick and thin lines correspond to Padé approximant
and series expansion methods, respectively.

without increasing the entropy, it requires the new particle to go into a low-lying
single-particle state, considerably well below Ey while once again cooling the gas
slightly to avoid an increase in the number of microstates. However, a particle in
the system with « < 2 is prevented from going below Ep as its paths are blocked
by other excited particles due to greater entropy than in o > 2. This suggests that
the particles which are taken out of the Fermi sea are more dispersed for a < 2
resulting in greater entropy than in o > 2.

For a < 2, pu/FEFr slowly rises with temperature compared to that in the Som-
merfeld method. The comparison shows that the results in the Sommerfeld method
fail to match with those obtained numerically beyond a certain temperature T
and T, decreases with decreasing a. The series expansion method is described rea-
sonably well when o > 2. Figure 1 also shows that at a fixed temperature pu is
correctly calculated only when the density is high. For lower density there is no
agreement between numerical and series expansion methods. As shown in figure 1,
the chemical potentials in the Padé approximant method are extended to higher
temperatures and lower density of particles for @ > 2. However, it does not give
any substantial improvement for a < 2.

The internal energies obtained in eq. (17) are compared with those obtained in
the numerical method in figure 2. Unlike u, U is found to increase for all a values.
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Figure 2. Internal energy of finite temperature scaled with respect to internal
energy at zero temperature as a function of thermal energy scaled with Fermi
energy for a = 1.01, 1.5, 2, 2.5 and 3. The internal energies calculated in the
numerical method are compared with those estimated in the series expansion
and Padé approximant methods. The symbols carry the same meaning as in
figure 1.

The agreement between the series expansion and numerical results is qualitatively
the same as shown earlier for u/Ewr. The series expansion method is good for lower
temperature and higher density of particles and it is better for « > 2 than for o < 2.
The internal energies obtained in this method are compared with those obtained in
the series expansion and numerical methods. While the Padé approximant method
gives an improvement from low-temperature limit to intermediate-temperature limit
and higher density of particles to lower density of particles when o > 2, it is not so
appreciable for dimensionalities below 2.

4. Summary

In summary, both © and U of the noninteracting Fermi gas are calculated in the
numerical and series expansion methods for o =1.01, 1.5, 2.5 and 3. Comparison
of these quantities in the numerical and series expansion methods shows that the
results obtained in the latter method are valid in the low-temperature and high-
density regimes. These quantities in 2D are obtained in closed forms. In order
to extend their validity to higher temperature and lower density, the results are
expressed in the Padé approximant method. The [1/3] Padé approximant form is
found to be the most suitable for the truncated series expansions of u and U.
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