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Abstract. We numerically investigate the motion of a charged particle in a planetary
magnetosphere using several kinds of equatorial plane phase portraits determined by two
dynamical parameters: the charge-to-mass ratio and the z-component of the angular mo-
mentum. The dependence of chaos on any of the three factors including the two parameters
and the energy is mainly discussed. It is found that increasing the energy or the absolute
value of the ratio always causes the extent of chaos. However, chaos is weaker for larger
angular momentum. Qualitative interpretations to the results obtained are also given.
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1. Introduction

Chaos means that the final dynamical state of a system is exponentially sensitive
to extremely small variations of initial conditions. There have been many studies
of chaos in celestial mechanics and dynamical astronomy because it can play an
important role in determining the dynamical structure and evolution of the solar
system [1]. In a series of papers, Wisdom [2-4] used chaos to successfully interpret
the origin of the 3:1 Kirkwood gap. Sussman and Wisdom [5] detected the chaotic
motion of Pluto when the orbital integration time of each outer planet reaches
845 million years. Besides complicated systems like those, two types of simplified
dynamical models that approximate the motion of real objects are usually taken into
account. One is the planar, circular, restricted three-body problem that describes
a surprising degree of complexity in the structure of the phase space [6]. The
other deals with the perturbed Kepler problems [7,8]. Thanks to the existence of
perturbations, in most cases the systems change from integrable to near-integrable,
even highly non-integrable.

An axisymmetric system consisting of a charged dust particle in a planetary
magnetosphere [9-12] is regarded as one of the perturbed Kepler problems. In this
model, Newtonian gravitational force of the particle is given by the planet, and
perturbed force is mainly from the rotation of the magnetic dipole. Which of the
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two forces is dominant? The answer depends on the particle’s size. For instance,
the gravity force on a 1 pm radius dust particle in Jupiter and Saturn rings is 100
times stronger than the electromagnetic force. On the contrary, the electromag-
netic force becomes more important for a small particle of 0.1 um radius. Perhaps
an interesting phenomenon is related to the case of particles in the intermediate
range, where the transition of the dominated dynamics between these two distinct
dynamical regimes occurs frequently. In this sense, Grotta-Ragazzo et al [13] dis-
cussed the equatorial dynamics of charged particles. They presented all possible
topological equatorial phase portraits, namely, outlines of graphs of the effective
potential on the equatorial plane. In fact each portrait is completely dependent
on the two dynamical parameters: charge-to-mass ratio and the z-component of
the angular momentum. At the same time, a classification of the equilibria on the
equatorial plane was given. Then an analysis of the stability of the equilibria and
that of separatrices and nearby periodic orbits on the equatorial plane with respect
to out-of-equatorial plane perturbations were also provided.

Two points affecting the identification of chaos are worth noting. One is neces-
sary to choose a reliable numerical integrator. A symplectic integrator [14], which
can conserve the symplectic structure exactly as the original flow, is very suitable
for studying the long-term evolution of Hamiltonian systems. On the other hand,
although a traditional numerical scheme (such as a Runge-Kutta algorithm) has an
artificial damping or excitation caused by the accumulation of the local truncation
error, these artificial factors cannot occur as manifold correction schemes are car-
ried out. Since Nacozy [15] and Baumgarte [16] proposed their ideas of correction
approach, manifold corrections have greatly been developed by several authors [17—
21]. It should be worth pointing out that a low-order traditional numerical scheme
with manifold corrections can be viewed as a fast and higher-precision device to
simulate various orbital motions. The other is important to adopt an appropriate
method for measuring or finding chaos. Now there have been a number of chaos
indicators. It should be pointed out that each of them has its advantages and dis-
advantages. Lyapunov exponents, as a common indicator of chaos, are independent
of the dimension of phase space, but they have some shortcomings [22-25]. The
method of Poincaré sections can provide an intuitive, clear portrait for the descrip-
tion of cantori or stochastic layers when the dimension of phase space minus the
number of independent first integrals is not more than three. Due to the symme-
try of the system with the charged dust particle in the planetary magnetosphere,
degrees of freedom about the system are reduced from three to two. In this envi-
ronment, the method of Poincaré sections should be a good means to describe the
dynamics.

Unlike the work of ref. [13], our intention in this paper is to apply a fourth-
order Runge-Kutta algorithm in the velocity scaling correction scheme of Ma et
al [19] to numerically trace the dynamics of orbits out of the equatorial plane by
virtue of various possible values of the three parameters such as the charge-to-mass
ratio, the angular momentum and the energy. The rest of the paper presents the
details. In §2 we introduce the related physical model, and evaluate the accuracy
of the numerical method considered. Then, we use Poincaré sections to observe the
qualitative evolution of the system for several cases. Interpretations to the results
obtained are also given. Finally, §4 summarizes our conclusions.
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2. Physical model and integration algorithm

A simplified physical model with a charged dust particle under the influence of
Keplerian gravity and a rotating magnetic dipole is given. Its equilibria on the
equatorial plane are introduced. Then, a Runge-Kutta family algorithm combined
with correction of energy is applied to work out this problem.

2.1 Physical model

A charged dust particle in a planetary magnetosphere is mainly subjected to the
action of the point-source gravity of the central planet, as the dominant force. Of
course, gravitational perturbations and perturbations from non-gravitational forces
also affect its motion. The strongest gravitational perturbation, 0.1 to 1% the
strength of the point-source gravity, arises from the planet’s non-spherical shape,
the ‘oblateness’ represented by the axially symmetric quadrupole (J3) component
in a multipole expansion of gravity. Other gravitational perturbations involve solar
gravity, gravity from other planets and attractions of planetary satellites. Electro-
magnetic (Lorentz) forces and radiation pressure ranging from 0.01 to 1% of the
strength of planetary gravity are some of the several non-gravitational forces, and
the various drag forces, such as plasma drag, Poynting—Robertson drag, and reso-
nant charge variations, are nearly 10~¢ times smaller than the gravity. Poynting—
Robertson drag is the strongest drag force, while plasma drag is relatively weaker.
Although these drag forces are so weak, they can give rise to secular changes in
the orbital energy and angular momentum. As to the effect of plasma drag, it is
invoked to explain energy dissipation when dust grains are very close to the giant
planets. Dust within the synchronous distance loses energy in collision with the
plasma and spirals in toward the planet because it moves faster than the plasma,
but dust outside the synchronous distance gains energy and drifts away from the
planet. This force will eventually damp orbital eccentricities and inclinations (see
[26,27] for detailed insight into the action of all the forces).

Note that collisions between dust particles can be neglected under the special
circumstance of low dust density. On the other hand, the size of a dust particle in
a planetary magnetosphere plays an important role in dominating the dynamics,
as mentioned in the Introduction. For smaller submicron-sized grains, the elec-
tromagnetic force can greatly exceed the gravity. In this case, the gravitational
force becomes too weak to be neglected. For the intermediate range in which both
the electromagnetic force and the gravitational force are comparable, and for the
case of other negligibly weak perturbations, the system of a charged dust particle
in a planetary magnetosphere is simplified as the following classical Hamiltonian
formulation
1 1 22 p2 1
H= 504+ 5 (v 0% ) 405 - 1, m

where p, ¢ and z represent cylindrical coordinates, and r = y/p2 + 22. Obviously,
D¢, & constant, stands for the z-component of the angular momentum. In addition,
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Table 1. A classification of the equilibria on the equatorial plane. Here NoE
denotes the number of equilibria and f1(8) = (6v/3|1 — 8]6)*/3.

Case Conditions NoE
1 0<d6<1,ps> f1(6) 3
2 0<d<1,py < f1(9) 1
3 0 <0, py > f1(d) 1
4 6 <0, py < f1(6) 3
5 0=0,ps #0 1
6 621, pp < f1(9) 0
7 (521,p¢>f1(5) 2

parameter § denotes the charge-to-mass ratio in a dimensionless way. For a particle
with charge ¢ and mass m, J is given by

q
0= mK . (2)
Here the constant K depends on the mass M of the planet, the spin angular velocity
Q of the planet, the magnitude M of the magnetic dipole moment of the planet,
the velocity ¢ of light, and the universal constant G of gravitation. It is expressed
as K = MQ/(cMG).
The effective potential of the system (1) on the equatorial plane z = 0 is of the
form

v, 1. 4§ 6 52

Ulp) =55 =5+ 5~ 5P+ 5 (3)

The equilibria on the equatorial plane can be obtained from the equation U’(p) = 0.

Note that a solution of the equation is completely determined by two parameters 0

and py. Therefore, different possible values of the parameters give different equa-

torial plane phase portraits. Seven cases about the equilibria are listed in table 1.

More details of the physical model and its equilibria on the equatorial plane can be
found in refs [9,10,13].

Case 5 indicates that the system (1) is just an integrable Keplerian problem. Its
dynamics is very clear to us, and so we do not pay more attention to it. Here we
are interested in understanding the structure of phase space of the system (1) for
weak electromagnetic forces with 0 < |4| < 1 in each of Cases 1-4.

2.2 A Runge—Kutta algorithm combined with correction of energy

Let us take § = 0.1, py = 2, and energy £ = —0.03147. Initial conditions are
as follows: p = 3.5, 2 = 0, p, = 0, and p, is a positive square root given by eq.
(1). We use a fourth-order Runge-Kutta algorithm (RK4) to solve the system (1)
with a fixed step-size of 0.1, and plot the evolution of the energy error with time
in figure 1. It is clearly shown that RK4 cannot preserve the energy of this system
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Figure 1. Comparison of energy errors between RK4 and its correction of
energy, the velocity scaling method.

(1) although the system is conservative. This is caused by the accumulation of the
local truncation error from the numerical scheme.

However, the velocity scaling method of Ma et al [19] is a simple tool to get rid
of the artificial dissipation of energy. Here are some details of the implementation.
Suppose that RK4 gives the system (1) a numerical solution (p5,p}, p*, 2*) at time
t. Inserting p, = Apj, p. = Ap%, p = p* and z = z* into eq. (1), we have the scale

factor of the form
1 p*2 2 p*2 1
E— -0 -0 — 4
2p*2 (p¢ T‘*?’) T‘*3 + r* ( )

with 7* = y/p*2 + 2*2. Obviously the corrected solution (p,,p., p, z) is more accu-
rate than the numerical solution (p;, pE, p*,2z*). For an illustration, p and p* (or
z and z*) do not have any difference when the scaling method is used at every
integration step, but do after many integration steps. In this way, the energy of
the system (1) is rigorously satisfied during the numerical integration. Numerical
experiments also support this fact. As expected, figure 1 describes that the energy
at every integration step is almost accurate to the order of machine error, 1076,
in a double-precision environment. This ensures the reliability of our numerical
approach. Next, a lot of numerical explorations are necessary so as to understand
the dynamics of this system.

2
Py’ + P2

3. Numerical results and interpretations

In this section, we survey the dynamical transition from order to chaos as one of
the three parameters F, § and py is varied, but the others are fixed. Parameter
spaces of (d,py) are based on those from the four leading cases in table 1. Then we
provide some theoretical analysis to the dependence of chaos on each parameter.
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Figure 2. Poincaré sections on the plane z =0 (p. < 0) with 0 < § < 1 and
ps > f1(9).

3.1 Numerical simulations

Case 1. 0 <6 <1, py > f1(9)

Suppose py has a fixed value, 2, and E is —0.03147 or —0.01. In addition, §
is taken as 0.1, 0.2 and 0.3 in sequence. Poincaré sections in figures 2a and 2b
display typical effects of varying parameter § on the dynamics for the given energy,
—0.03147. Here are some rich details. In the case of a smaller parameter, § =
0.1, the electromagnetic force, as a perturbed force, is so weak that the Keplerian
gravity completely dominates the dynamics. All KAM tori remain still, but they
are twisted, as shown in figure 2a. With the increase of perturbations, some multi-
island orbits appear in the case of § = 0.2, and some tori are destroyed and tend
to chaos. As the perturbation becomes stronger, such as § = 0.3 in figure 2b, a lot
of tori given by the original Keplerian gravity die out. Instead, a larger chaotic sea
occur. These facts tell us that increasing the charge-to-mass ratio leads to increase
in chaos.

As the energy increases, what about the dynamics? Like figure 2b, figure 2c
confirms that the chaos will be almost global for § = 0.3 for the case of £ = —0.01.
Saying this in another way, the larger the energy becomes, the stronger the chaos
will be.
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Figure 3. Poincaré sections on the plane z =0 (p. < 0) with 0 < § < 1 and
ps < f1(6).

On the other hand, let us demonstrate the dynamics as the angular momentum
increases. By comparing figures 2c and 2d, we find that a larger angular momentum
corresponds to weaker chaos.

As a result, increasing either the ratio or the energy gives rise to the strength of
chaos, but increasing the angular momentum decreases the strength of chaos. Is it
true for other cases?

Case 2. 0 <6 <1, py < f1(9)

It is the same as the operation of Case 1 but p, = —1 is fixed at first. The
relations (not plotted for the sake of saving the space) for the dependence of chaos
on parameters § and F are still similar to those of Case 1. Figures 3a and 2a show
that a negative angular momentum causes more chaos than a positive angular
momentum. However, chaos is not stronger when the negative angular momentum
gets smaller, for example, py = —2 in figure 3b.

Case 3. 6 <0, py > f1(0)

In the light of figures 2c and 4a, one can observe that it is more difficult to yield
chaos when § is negative. If chaos is possible to occur for some negative values of 9,
chaos becomes stronger as the negative ratio, d, is smaller (see figures 4b and 4c for
more information). Still it can be concluded from figures 4a and 4b that a larger
energy corresponds to stronger chaos. However, figures 4b and 4d illustrate that
the transition from chaos to order occurs when the positive angular momentum
increases.

Case 4. 6 <0, pg < f1(9)
The parameters chosen are the same as those in Case 3 but py = —2. Conse-
quently, the onset of chaos seems to disappear in figure 5.

As stated in the above four cases, some impacts of the three parameters on the
dynamics of the system (1) have been described. Increasing energy always increases
the extent of chaos. Similarly, chaos is stronger as the absolute value of the charge-
to-mass ratio increases. On the contrary, chaos is weaker as the absolute value of
the angular momentum increases. Interpretations are offered in the following.
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Figure 4. Poincaré sections on the plane z = 0 (p, < 0) with § < 0 and
ps > f1(9).

3.2 Qualitative interpretations

Our analysis is based on the effective potential

Ulp,2) = b
(02) = 08— T ol % L T )

as well as the relation between the magnitude L of the angular momentum, the
orbital semimajor axis a and the orbital eccentricity e in the form

L =+/a(l—e€?). (6)

The first term in the right-hand side of eq. (5) gives a centrifugal inertial force
caused by a rotating reference frame, and the second term stands for the Newtonian
gravitational potential, while the third and fifth terms correspond to the action of
the electromagnetic forces. A point to illustrate is that, for Case 5 without the
electromagnetic force in table 1, the equilibrium on the equatorial plane, as a fixed
point in this rotating reference frame, implies a circular orbit in an inertial reference
frame. In fact, the equilibrium implies that the Keplerian gravity matches with the
centrifugal inertial force. It is clearly seen from eq. (5) that the dynamics must
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be non-chaotic if the electromagnetic force is extremely weaker than the gravity
force. On the contrary, there should be no chaos if the gravitational force becomes
negligible compared to the electromagnetic force. A necessary condition for causing
chaos is a positive sum of the third to fifth terms in eq. (5). That is to say, a sum
of the electromagnetic forces must be a repulsive force.

For the case of 0 < |§| < 1 with p > 1, usually z is small, so that we have p ~ r.
Thus, the electromagnetic forces are mainly determined by both the third term and
the fourth term in eq. (5). Note that the former is more important when py is not
large enough. Either for pgy > 0 or for py < 0, the electromagnetic forces always
become stronger and stronger as the positive parameter § is changed from small to
large. This increases the extent of chaos. This is what we have seen in figures 2
or 3. On the other hand, for a fixed positive value of &, chaos should get weaker
as the positive parameter p, increases because the fourth term seems to have an
attractive effect. In addition, chaos seems to become more dramatic when |py| with
Dy < 0 increases because the fourth term turns out to be due to the repulsive action
such that the perturbations from the electromagnetic forces get stronger. However,
figure 3 does not approve of the result. Here it should be noted that the first term
in eq. (5) is more important than the fourth term. In other words, a larger value
of L in eq. (6) corresponds to a smaller eccentricity e for a fixed semimajor axis
a. This does not result in a closer encounter of the planet with the particle at the
pericentre so that both the Keplerian gravity and the electromagnetic force become
weaker. In particular, the variation of the latter is more typical. Without doubt,
it is more difficult to produce chaos when § < 0 than when § > 0 since the third
term provides the attractive effect such that the perturbations decrease. This is
proved by comparing figures 2 and 4. Of course, the onset of chaos is possible when
Py > 0 because the fourth and the fifth terms represent the repulsive forces. As
0 gets smaller, the repulsive forces get larger. In this sense, the extent of chaos
in figures 4b and 4c increases slightly with |0| decreasing. Similarly, the growth of
pg (>0) should have raised the extent of chaos for the same negative values of §
and E. But figures 4b and 4d give a different answer as the positive parameter pg
increases. The reason is the same as that of figure 3. If py < 0, there is no great
chance for the appearance of chaos because the fourth term seems attractive. What
has happened in figure 5 is not unexpected. As far as the dependence of chaos on
the energy is concerned, it can be seen easily from eq. (6) that the chaos increases
with the energy. For a given L, a larger energy leads to a larger semimajor axis.
Meanwhile, the eccentricity becomes larger. Thus the perturbation is stronger at
the pericentre.

In order to clearly express the results above, we list table 2 in which effects of
the dynamical parameters on chaos are given. In short, our numerical results are
fully coincided with these analysis.

4. Summary

We study the motion of charged dust particles under the action of Newtonian
gravitational and weak electromagnetic forces. The dynamics depends on three dy-
namical parameters, the charge-to-mass ratio J, the z-component py of the angular
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Figure 5. Poincaré sections on the plane z = 0 (p. < 0) with é < 0 and
po < f1(6).

Table 2. Chaos depending on one varying parameter in weak electromag-
netic fields with 0 < |[§] < 1. In col. (1) two parameters are fixed, while each
parameter in cols (2)—(6) is varied from small to large. The symbol | means
increasing, and | means decreasing. |} indicates that it is rather difficult to
occur chaos. Even if chaos can exist, the extent of chaos diminishes by increas-
ing a certain parameter. — denotes no comparison between fixed parameters
and one varying parameter.

Fixed\Varying T>0 1T6d<0 Tpg>0 Tpp <0 TE<O

§>0,F — - 1 1 -
0<0, F - — 1 2 _
Py >0, E T ! - -

Py <0, E 7 U - - -
6%+ #0 - - - - 1

momentum and the energy E. Numerical and analytical methods discuss the tran-
sition from order to chaos as one parameter is varied but the other two parameters
remain invariant. Under some necessary conditions for the occurrence of chaos,
increasing the energy always leads to the strength of chaos. In addition, chaos is
stronger as the absolute value of the ratio increases. On the contrary, chaos is
weaker as the absolute value of the angular momentum increases. Especially, chaos
is very difficult to occur if 6 < 0 and py < 0.
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