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Abstract. We prove the theorem: The second-order quasilinear differential operator as
a second-rank divergence-free tensor in the equation of motion for gravitation could always
be derived from the trace of the Bianchi derivative of the fourth-rank tensor, which is a
homogeneous polynomial in curvatures. The existence of such a tensor for each term in
the polynomial Lagrangian is a new characterization of the Lovelock gravity.

Keywords. Gauss–Bonnet gravity; Lovelock gravity; higher derivative; higher dimen-
sions; Bianchi derivative.

PACS Nos 04.20.-q; 04.20.Cv; 04.50.Gh; 11.10.-z; 11.15.-q

The Bianchi differential identity involving the purely antisymmetric derivative of
a derivative (D2 = 0) was famously interpreted by John Wheeler [1] as, boundary
of boundary is zero. The familiar examples are the curl of the gradient and the
divergence of the curl being zero. The former signifies a scalar while the latter a
vector field. However, its contraction in the two cases is vacuous and hence does
not lead to a non-trivial statement [1a]. When we go beyond a vector to a tensor
field, it becomes interesting.

Gravity is the universal force which means it links to all particles unmindful of
their mass being non-zero or zero. Its linkage to massless particles leads to the
profound realization that it could only be described by the curvature of space-time
[2,3]. This means that the dynamics of gravity resides in space-time curvature
which must fully and entirely determine it. That is, the gravitational dynamics
must follow from the curvature which is described by the fourth-rank Riemann
curvature tensor (it is defined as Ai

;lk − Ai
;kl = Ri

mlkAm, a generalized ‘curl’).
It involves second and square of the first derivatives of the space-time metric, gab.
The Bianchi identity is given by the antisymmetric derivative of Ri

mlk,

Ri
m[lk;n] = 0. (1)

If the gravitational dynamics has to follow from the curvature, it has to follow from
this identity which is the only available geometric relation. The only thing we can
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do to it is to contract the available indices which do lead, unlike for scalar and
vector, to a non-vacuous relation,

Ga
b;a = 0, Gab = Rab − 1

2
Rgab, (2)

where Rab is the Ricci tensor, the contraction of Riemann, while R is the trace
of Ricci. Now the trace (contraction) of the Bianchi identity yields a non-trivial
differential identity from which we can deduce the following relation:

Gab = κTab − Λgab, T a
b;a = 0, (3)

where Tab is the second-rank symmetric tensor with vanishing divergence and κ
and Λ are constants. The left-hand side of the equation is a second-order dif-
ferential operator on the metric gab. For this equation to describe dynamics of
gravity, the tensor Tab should describe the source/charge for gravity which should
also be universal. It should be shared by all particles and hence Tab should rep-
resent energy–momentum distribution. Thus we obtain the Einstein equation for
gravitation which entirely follows from the space-time curvature. We have however
two constants of which one (κ) is to be determined by experimentally measuring
the strength of the force and is identified with Newton’s constant, κ = −8πG/c2.
Why is there a new constant Λ which though arises in the equation as naturally as
the energy–momentum tensor, Tab? It is perhaps because of the absence of fixed
space-time background which exists for the rest of physics and the new constant
may be a signature of this fact. It is the universal character of gravity which makes
space-time itself dynamic. The force-free state would however be characterized by
homogeneity and isotropy of space and homogeneity of time which will in general
be described by space-time of the constant curvature and not necessarily of zero
curvature. The new constant Λ is the measure of the constant curvature of space-
time and it identifies the most general space-time for force-free state. It may in
some deep and fundamental sense be related to the basic structure of space-time.

We also know that the complete contraction of Riemann gives the scalar curva-
ture, R, the Einstein–Hilbert Lagrangian which on variation leads to the divergence-
free Einstein tensor, Gab, and subsequently the Einstein equation. We thus have
the two distinct but equivalent derivations for the gravitational dynamics. The
former is simply driven by the geometry while the latter is in the spirit of every dy-
namical equation following from an action. It is always possible to write an action
constructed from Riemann curvature for higher derivative gravity and derive the
corresponding equation of motion. Similarly, is it possible to derive an analogue
of Gab, a divergence-free differential operator from the Bianchi derivative of the
higher-order curvature polynomial? This is the question we wish to address and
show that the answer is in affirmative. It would give yet another characterization
of the Lovelock gravity.

We believe that gravitational dynamics to follow from the space-time curvature
should be a general principle which should be true in general for higher-order theo-
ries as well. Thus arises the question of going beyond the linear order in Riemann.
Let us consider the quadratic tensor,

Rabcd = RabmnRmn
cd + αR[a

mRb]mcd + βRRabcd, (4)
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where α, β are constants. We consider the Bianchi derivative, Rab[cd;e] which on
contraction gives

gacgbdRab[cd;e] = (−2Re
c +Rδe

c);c (5)

where Rac = gbdRabcd and R = gabRab. It turns out that for α = 4 and β = 1, we
obtain

Rcd
[cd;e] = (−2Re

c +Rδe
c);c

=
(
−He

c +
1
2
LGBδe

c

)

;c

. (6)

That is

Rcd
[cd;e] −

1
2
(LGBδe

c);c = −Hc
e;c = 0. (7)

The tensor Hab is divergence-free, H b
a;b

= 0, and is given by

Hab = 2(RRab − 2Ra
mRbm − 2RmnRambn

+Ra
mnlRbmnl)− 1

2
LGBgab. (8)

It results from the variation of the well-known Gauss–Bonnet Lagrangian LGB =
R2

abcd − 4R2
ab + R2 where we have written R2

abcd = RabcdR
abcd. That is, we can

write

Hab = 2Rab − 1
2
Rgab, (9)

where R = LGB.
Though Hab can be written in terms of Rabcd, it does not follow directly from

it as Gab does from Rabcd. We note that Bianchi derivative vanishes only for the
Riemann curvature signifying the fact that it can be written as a generalized curl
of a vector. No other tensor will have vanishing Bianchi derivative. However, to
find the analogue of Gab, we do not require the vanishing of Bianchi derivative of
the quadratic tensor Rabcd, instead vanishing of its trace would suffice. We see that
even the trace of Bianchi derivative does not vanish but is equal to 1

2 (LGBδe
c);c.

It suggests that the curvature polynomial should also include a term involving its
own trace which would make no contribution in the linear case. Before we do that,
let us write Rabcd and Hab for a general order n in the Lovelock polynomial [4].
In the context of higher derivative gravity theories, a unified scheme of writing
Lagrangian is given [5] as an invariant product, QabcdRabcd where Qabcd has the
same symmetry properties as the Riemann tensor. It is constructed from metric and
Riemann curvature and has vanishing divergence, Qabcd

;c = 0. For the Lovelock
Lagrangian, it is required to be a homogeneous function of the Riemann curvature.
Since Rabcd is also a homogeneous polynomial in Riemann curvature for a given
order, it is possible to write

Rabcd = Qab
mnRmncd, (10)
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where Qabcd is in general given for nth order by [5],

Qab
cd = δaba1b1...anbn

cdc1d1...cndn
Ra1b1

c1d1 ...Ranbn

cndn . (11)

Let us verify this for the quadratic Gauss–Bonnet case where Qabcd could explicitly
be written as [5]

Qabcd = Rabcd − 2Ra[cgd]b + 2Rb[cgd]a + Rga[cgd]b. (12)

It is easy to see that when it is substituted in eq. (10), we obtain the Gauss–Bonnet
Rabcd as given in eq. (4) with α = 4, β = 1. We could thus write Rabcd by using
eqs (11) and (10) for any term in the Lovelock polynomial and the corresponding
Hab for the nth polynomial will be given by

Hab = nRab − 1
2
Rgab (13)

which will for the linear case n = 1 be the Einstein tensor, Gab. In this case, the
trace of the Bianchi derivative vanishes because the Riemann tensor satisfies the
Bianchi identity. However, Hab as defined above is the analogue of the Einstein
tensor for the nth-order polynomial and hence the generalized Einstein tensor is
divergence-free. As trace of Rabcd is the Einstein–Hilbert Lagrangian, trace ofRabcd

gives the Gauss–Bonnet and higher-order Lovelock Lagrangian. Note that eq. (5)
holds good in general for any order n of the polynomial Rabcd. We can thus write
in general for eq. (7) as

Rcd
[cd;e] −

n− 1
n

(Rδe
c);c = − 2

n
H c

e;c
= 0, (14)

where R is the corresponding nth-order Lagrangian. For n = 1, the second term
on the left vanishes indicating the Bianchi identity and Hab = Gab. For n > 1,
the trace of Bianchi derivative does not vanish unless the trace R is also included
as indicated by the second term which then leads to the required divergence-free
tensor, Hab. Apart from the quadratic Gauss–Bonnet case, we have also verified
the above relation for n = 3 cubic polynomial. It is interesting that the order of
the polynomial appears in the definition of the corresponding curvature polynomial
tensor yielding the second-rank symmetric divergence-free tensor.

We now turn to redefining the curvature polynomial which also includes its trace
such that the trace of the Bianchi derivative vanishes directly giving the required
differential operator in terms of divergence-free Hab. We thus write

Fabcd = Rabcd − n− 1
n(d− 1)(d− 2)

R(gacgbd − gadgbc), (15)

where n is the order of the polynomial and d is the dimension of space-time under
consideration. Then

−n

2
Fcd

[cd;e] = H c
e;c

= 0 (16)

which verifies eq. (13). In terms of Fabcd, Hab is given by
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n

(
Fab − 1

2
Fgab

)
= Hab, (17)

where Fab = gcdFacbd and F = gabFab. It is interesting to note that Fab is
the analogue of the Ricci, Rab and Hab of the Einstein, Gab with the order n of
the polynomial Rabcd which is the analogue of the Riemann, Rabcd. Thus, Hab

is obtained from Fabcd in the same manner as Gab is from Rabcd, and for n = 1,
Fabcd = Rabcd = Rabcd. All these however happen only for the specific Lovelock
coefficients in the polynomial thereby determining the Lovelock polynomial.

Note that Hab defines the general conserved (Einstein) tensor for any order n of
the homogeneous curvature polynomial and let us take its trace which would give

F =
d− 2n

n(d− 2)
R. (18)

For the usual Einstein gravity, n = 1, it is F = R for d > 2 and the Einstein tensor
vanishes for d = 2. Thus, we have the general result that d > 2n for nth-order
polynomial and Hab vanishes for d = 2n. It is the variation of R (and so also
F) which gives Hab which vanishes for d = 2n but not R. If we take F which is
proportional to the Lovelock Lagrangian R, then the Lagrangian itself vanishes for
d = 2n. It is remarkable that the existence of an analogue of the Einstein tensor in
general – a conserved tensor which is non-zero only for d > 2n, uniquely determines
the Lovelock polynomial.

By redefining the curvature polynomial we have been able to derive the
divergence-free differential operator for the gravitational dynamics. This is what
we had set out to do and it could be stated as follows:

Theorem

The second-order quasilinear differential operator as a second-rank divergence-free
tensor in the equation of motion for gravitation could always be derived from the
trace of the Bianchi derivative of the fourth-rank tensor, Fabcd, which is a homo-
geneous polynomial in curvatures. The trace of the curvature polynomial is propor-
tional to the corresponding term in the Lovelock action and corresponding to each
term in the Lovelock Lagrangian, there exists a fourth-rank tensor which is a new
characterization of the Lovelock Lagrangian.

It is the requirement of quasilinearity (linear in second derivative) of the equation
of motion which singled out the Lovelock polynomial with specific coefficients. In
our case it is replaced by the requirement that the fourth-rank tensor which is
homogeneous in curvatures yields a divergence-free second-rank tensor through the
trace of its Bianchi derivative. This automatically ensures the quasilinearity of the
equation. For non-Lovelock action, there would not exist a fourth-rank tensor with
this property.

In a sense, the Riemann curvature could be looked upon as a Bianchi poten-
tial giving the Einstein tensor for the Einstein gravity while Fabcd is the Bianchi
potential giving Hab for the Lovelock dynamics. Thus, each term in the Love-
lock polynomial has a potential tensor Fabcd given by eqs (10), (11) and (15). It
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is remarkable that there exists Bianchi potential for each term in the Lovelock
Lagrangian. Non-existence of potential characterizes all other actions like f(R)
gravity. The existence of Bianchi potential thus becomes a distinguishing feature
for the Lovelock action. In this context it may be noted that the requirement that
both Palitini and metric action give the same equation of motion also picks up the
Lovelock action [6]. We have thus three distinct properties (namely quasilinearity
of equation of motion, equivalence of Palitini and metric formulation and existence
of Bianchi potential) which characterize the Lovelock action. I believe that there
should exist a thread knitting them and it would be interesting to probe that.

However, the relevance of the order in the Lagrangian for the gravitational dy-
namics depends upon the space-time dimension. For instance, for d < 5, the
quadratic Gauss–Bonnet term makes no contribution to the equation of motion
and similarly the cubic term becomes relevant only for d > 6. We would however
like to emphasize that for d > 4, Hab must be included along with Gab for the
classical dynamics of gravitation. In the ultraviolet limit of the theory signifying
superstrong gravitational field, it is pertinent to include higher-order curvature ef-
fects. If we continue to have a well-defined evolution of the field, the equation must
be quasilinear. This will inevitably and uniquely lead to Lovelock polynomial and
higher dimension. Further, one loop correction in string theory also generates the
Gauss–Bonnet term [7]. That is, strong field limit of classical gravity and one-loop
quantum correction seem to share the same Gauss–Bonnet ground. It could there-
fore be envisioned that the classical limit to quantum gravity is perhaps via the
Lovelock gravity and the relevant order in the polynomial (loop correction) being
given by the space-time dimension under consideration. The Gauss–Bonnet and
higher orders may therefore represent an intermediary state between the classical
Einstein gravity and quantum gravity [8].

Gravity is an inherently self-interactive force and the self-interaction could only
be evaluated by successive iterations. The Einstein gravity is self-interactive but it
contains only the first iteration through the square of first derivative in Riemann
curvature. The question is, how do we stop at the first iteration? The second
iteration would ask for a quadratic polynomial in Riemann curvature which should
give the corresponding term in the equation of motion. Thus, the quadratic tensor,
Rabcd as given in eq. (4) with specific coefficients, will alone meet the requirement
(quasilinearity of the differential operator) for inclusion of the second iteration.
However, its effect in the equation of motion can be felt only for d > 4, and hence
we have to go to higher dimension for the physical realization of the second itera-
tion of self-interaction [8,9]. It is remarkable that even classical dynamics of gravity
asks for dimension > 4. As two and three dimensions were not big enough for free
propagation of gravity, similarly four dimension is not big enough to fully accom-
modate self-interaction dynamics of gravity. Then the most pertinent question is,
where does this chain end? Let us envision the AdS/CFT-like scenario where the
3-brane ((3 + 1)-space-time) forms the boundary enclosing the higher-dimensional
bulk space-time. If matter fields remain confined to 3-brane, the bulk would then
be free of matter and hence it would be maximally symmetric (homogeneous and
isotropic in space and homogeneous in time). It is then a space-time of constant
curvature, dS/AdS, with vanishing Weyl curvature. There is no free gravity to
propagate any further and hence the chain stops at the second level at least in
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this particular construction. Whether this is a generic setting or not is however an
open question. It may be noted here that gravitational equation with the inclu-
sion of both Gab and Hab for empty space in higher dimension admits dS/AdS as
solution [8].

In what dimension should matter live is to be entirely determined by the mat-
ter dynamics. If the matter fields are gauge vector fields described by 2-form, the
conformal invariance (universal scale change, gab → f2gab) of their dynamics will
dictate that they live in four dimension. This general principle is always obeyed
by the matter field dynamics unless a scale in terms of mass etc. is introduced by
spontaneous symmetry breaking. The symmetry breaking is indicative of theory
being incomplete and it is hoped that the complete theory would restore the con-
formal invariance. It is therefore reasonable to take that matter remains confined
to 3-brane. This view is also supported by the string theory where open strings
have their endpoints on the brane indicating residence of matter there.

The most fundamental question is, how do we know there exist higher dimensions
and if so why do we not see them? The existence of dimension can only be probed
by a physical interaction. All our probes are matter field forces like electromag-
netic, which remain, as argued above, confined to 3-brane and hence they cannot
fathom higher dimension. Since gravity is universal, it cannot be confined entirely
to the brane and can propagate in higher dimension. Above we have argued quite
convincingly that there is a strong case for higher dimension for physical realization
of the second iteration of self-interaction. It is a purely classical motivation (we
have also elsewhere [8,9] given a couple of more classical arguments) while higher
dimension is a natural arena for string theory. The only way higher dimension
could thus be probed is by a very high energy pure gravitational experiment. This
is what we have not yet been able to do and hence the question remains open.

We had set out to establish the general principle that gravitational dynamics
resides in space-time curvature and hence it should always and entirely be driven
by space-time geometry. We have shown this by deriving the quasilinear differential
operator for the equation of motion for the Lovelock gravity. In particular, we have
found a new geometric characterization of the Lovelock gravity in existence of
Bianchi potential for each term in the polynomial. This is indeed an interesting
general property.
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