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Abstract. Pulsed wire technique is a fast and accurate method for the measurement of
first and second field integrals of undulators used in free-electron lasers and synchrotron
light sources. In this paper, we present a theoretical analysis of this technique by finding
out the analytic solution of the differential equation for the forced vibration of the wire
taking dispersion due to stiffness into account. Method of images is used to extend these
solutions to include reflections at the ends. For long undulators, the effect of dispersion
of the acoustic wave in the wire could be significant and our analysis provides a method
for the evaluation of the magnetic field profile even in such cases taking the effect due to
dispersion into account in an exact way.
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1. Introduction

Undulators are important components of free-electron lasers and synchrotron ra-
diation sources. The performance of free-electron lasers and synchrotron radiation
sources depends critically on the quality of the magnetic field of the undulator. In
an ideal case, the on-axis magnetic field in a planar undulator is transverse and
varies sinusoidally along its axis such that the trajectory of a relativistic electron
injected along its axis is sinusoidal in the plane of oscillation. Any deviation in the
trajectory from the ideal sinusoidal trajectory produces phase error, which results
in the reduction in the brightness of the radiation in the case of synchrotron ra-
diation sources. In the case of free-electron lasers, this results in the reduction of
laser gain that deteriorates the performance of the device. It is therefore important
to characterize the field quality of undulators developed for free-electron lasers and
synchrotron radiation sources.
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One of the techniques for the characterization of field quality in the undulator is
the pulsed wire method, which was first proposed by Warren [1] for the measure-
ment of profiles of first and second field integrals of an undulator. The first and
second integrals of the magnetic field in the undulator, denoted by I1(z) and Iz(2)
respectively, are defined as

L(z) = /0 dz B(2), (1)

I(z) = /0 dz /0 42’ B(2), @)

where B(z) is the y-component of the magnetic field as a function of the location z
along z-axis in the undulator. The method has since then been used and improved
by several authors [2-8] for fast and accurate measurement of the magnetic field
profile. In this method, a thin wire is stretched along the axis of the undulator and
a current pulse is passed through the wire. The forced vibration is thus produced
in the wire which propagates in both directions along the length of the wire. By
observing the vibration of the wire as a function of time at any given point along
the wire, one can obtain the information about the magnetic field profile in the
undulator. It has been shown that for delta-function excitation of the current in
the wire, the vibration in the wire at any location follows the profile of the first
integral of the magnetic field and for the step-function excitation, the vibration
follows the pattern of second integral of the magnetic field [1]. For a relativistic
electron beam injected in the undulator, the xz-component of the velocity v, of the
electron injected along z-axis at z = 0, as a function of z is given by

o) = = /0 dz B(2), 3)

where e is the absolute value of the electronic charge, m is the electron’s rest mass
and ~ is the electron energy in units of its rest mass energy. The displacement of
electron along x-axis is given by

x(z) = ¢ /OZ dz /OZ dz' B(%'), (4)

Ymuvz

where v, is the electron velocity along z-axis, which can be assumed to be constant
for the relativistic case with v > 1. From the above expressions, it is clear that the
profile of the first integral of the magnetic field in the undulator is proportional to
the velocity profile of the electron in the undulator. The second integral profile of
the magnetic field in the undulator is a measure of the trajectory of the electron
beam in the undulator. The error in the trajectory of the electron in the undulator
critically affects the performance of the device. Measurement of these integrals
therefore becomes an important part in the characterization of the field quality of
an undulator.

Compared to the more conventional technique of performing these measurements
using Hall probe, the pulsed wire technique has several advantages. First, it is much
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faster compared to the Hall probe technique since in the Hall probe technique,
measurements are taken point by point and a sufficient settling time should be
given at each point for the Hall probe reading to settle down. Second, it is more
suitable for performing measurements with mini-gap undulators since the diameter
of the wire can be very thin compared to a Hall probe. The measurement of
the first field integral by the pulsed wire technique is typically as accurate as the
Hall probe method, whereas the second integral measurement could be performed
even more accurately using pulsed wire technique [2]. We would however like to
clarify here that the point by point magnetic field data obtained using Hall probe
have in general more information than the field integral measurements that we are
discussing here. For example, the measurement of optical phase error, which is an
important parameter to characterize the undulator field quality is more accurately
done by point by point measurement of magnetic field [9]. Compared to other
techniques of measuring field integrals, e.g., stretched wire method [10] and rotating
coil method [11], the pulsed wire method has however the advantage that it gives
the profile of first and second field integrals as a function of distance along the
undulator axis. The stretched wire method gives a single number for each of these
integrals, where the integration is performed over the entire length of the undulator.

The previous analyses of the pulsed wire technique available in the litera-
ture [1,3,4] are based on the qualitative arguments and not on the rigorous solution
of the differential equation of the forced vibration of stretched wire with proper
boundary conditions. This approach is needed for a complete analysis of the prob-
lem. A knowledge about the complete time evolution of the vibration of the wire
for the most general case will help in the design of the pulsed wire set-up for mea-
surements of field profile. In this paper, we present such an analysis based on the
solution of the differential equation for the forced vibration of the stretched wire,
including the boundary condition at the ends of the wire.

The pulsed wire technique has limitations due to several phenomena, e.g., sag
in the wire due to self-weight, dispersion due to stiffness in the wire, attenuation
in the wire, scattering due to inhomogeneity or impurity in the wire etc., as dis-
cussed by Warren [1]. For long undulators, the effect of dispersion of the acoustic
wave propagating in the wire becomes important. The waves having different wave
numbers travel with different speeds in the wire and the shape of the pulse prop-
agating in the wire is not preserved and gets distorted. This gives rise to problem
in the measurement of the magnetic field profile for the case of long undulators.
One typically tries to avoid this problem by reducing the dispersion in the wire by
increasing the tension in the wire up to the limit of yield strength and reducing
the diameter of the wire. However, the reduced thickness of the wire gives rise to
problem due to spurious signal arising due to inhomogeneity in the wire [3]. On
the other hand, if one keeps the wire thickness large enough to average out the
imperfections in the wire, the effect of dispersion becomes non-negligible. In this
paper, we find out an analytical solution of the problem that allows us to calculate
the magnetic field profile correctly from the vibration profile of the wire, even in
the presence of significant dispersion, by taking the effect due to dispersion in an
exact way.

In the next section, we discuss the basic theory where we give the most gen-
eral solution of the fourth-order linear partial differential equation for the forced
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Figure 1. Schematic of the pulsed wire set-up. The wire is fixed at one
end and at the other end, a damper is used such that there is no reflection
from that end. The coordinate system used in the paper is shown. Current is
flowing along the negative z-direction.

vibration of the stretched wire and show that the solution satisfies the differential
equation. We use the method of images to include the boundary conditions at the
ends of the wire. In §3, we discuss the results obtained for special cases and describe
the time evolution for these cases. Finally, we present some conclusions.

2. Basic theory

The schematic of the pulsed wire set-up is shown in figure 1. The stretched wire
is fixed at one end and the other end goes over a pulley. There is a damper on
the pulley end to avoid reflections from this end. The fixed end and the pulley are
typically assembled on a translation stage, which is not shown in the figure. The
fixed end is at z = 0 and the detector is kept at z = zq. The magnetic field is
assumed to be present only in the region (zq +d) < z < (24 + d + L).
The differential equation for the forced vibration in the z-direction of a wire
stretched along the z-axis is given by [12]
0t 0%x 0%x
—EM@‘FT@—Mﬁ =—f(z1), (5)

where E is the modulus of elasticity, M is the moment of inertia of the cross-
sectional area with respect to the neutral axis, T' is the tension and p is the mass
per unit length of the wire. Here, f(z,t) is the force per unit length experienced
by the wire in the z-direction at location z at time ¢ and in this case is given by

f(zt) =1(t)B(2), (6)

where I(t) is the current in the wire at time ¢ and B(z) is the magnetic field in
the y-direction at z. Note that the first term in eq. (5) gives rise to dispersion of
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acoustic waves in the wire as first studied by Lord Rayleigh [3,13]. The solution
of the above equation can be obtained by using Fourier transform technique. The
solution for the initial condition z(z,0) = 0 and boundary condition z(z,t) = 0 for
z — Fo00 is given by

I / ee k R / N ikz'
x(z,t) = i/o dt /_Oo dkw(k)/z_“k")t/ dz"A(k)I(t —t")e"™* , (7)
where
A(k) = 1/+Oo dz B(z)e ™=, (8)
2r J_

and w(k) is given by

wk) = k\/?h + %k? 9)

As shown in Appendix A, the solution given by eq. (7) satisfies the differential
equation given by eq. (5).

We now consider the case where the wire is fixed at the end z = 0. This will give
rise to reflection. We can use the method of images to find the solution subjected
to this boundary condition. Application of the method of images for solving the
wave equation in the stretched wire is discussed in ref. [12]. Here, we apply this
method for the analysis of the pulsed wire technique. In this problem, the actual
magnetic field B(z) is specified only for z > 0. We introduce a fictitious magnetic
field given by

B(=2) = =B(z), (10)

in the region z < 0, as shown in figure 2. One can show that this will give rise to the
condition that A(—k) = —A(k). Putting this condition in eq. (7), one can verify
that the solution with the above fictitious magnetic field satisfies the boundary
condition, x(0,t) = 0, as shown in Appendix A. The solution in the region z > 0
will therefore be given by eq. (7), where A(k) corresponds to the total magnetic
field, i.e., the actual field plus the fictitious field. This solution satisfies eq. (5) as
well as the boundary condition.

For the situation when the wire is fixed at both the ends, the boundary condition
will be z(0,t) = 0 and also z(z1,t) = 0, where z; is the total length of the wire.
Here, the actual magnetic field B(z) is specified only for the region 0 < z < z;. We
can define the fictitious magnetic field outside this region given by

B(—z)=—-B(z), B(z1+z2)=-B(zx1—2), (11)

which is the inversion of mirror image of the magnetic field at z = 0 and 2, as
illustrated in figure 2. Note that in this case, the total magnetic field, including
the fictitious magnetic field becomes periodic with a period = 2z;. The allowed
values of k are therefore restricted to nm/z;, where n is an integer. With the
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one period

Figure 2. Illustration of fictitious magnetic field for two cases. Plots of the
actual magnetic field and the fictitious magnetic field are shown by bold and
dashed curves respectively. The upper figure shows the fictitious magnetic
field for the case where the wire is fixed at one end only. The lower figure
shows the fictitious magnetic field for the case where the wire is fixed at both
ends. Note that in this case, the total magnetic field (including the fictitious
magnetic field) becomes periodic.

above fictitious magnetic field, the solution given by eq. (7) satisfies the boundary
conditions z(0,¢) = 0 and x(z1,t) = 0 as shown in Appendix A.

We have thus obtained the most general solution for the case when the wire is
fixed either at one end or at both ends. Our solution takes the time dependence of
the current and also the effect of dispersion due to stiffness in the wire. In the next
section, we discuss the solutions for different cases.

3. Discussions

Let us discuss the case when the wire is fixed at z = 0, but is infinite in the positive
z-direction and also the dispersion due to stiffness in the wire is negligible. In this
case, the deflection in the wire at the detector located at z = zq is given by

v t za+uvot’
x(2q,t) = %/0 dt’ / dz I(t —t')B(z)

24

+/ dz I(t — t’)B(z)} , (12)

a—vot’
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where vy = /T'/u is the phase velocity of the acoustic wave in the limit k£ — 0.
Here, the first term is due to the wave reaching zq from the region z > zq and the
second term is due to the wave reaching from the region z < z3. We assume that
the magnetic field is non-zero only in the region (zq +d) < z < (24 +d+ L). The
second term in the above equation is then due to reflection. The first term is the
main signal that we denote by z/(z,t) and the second term is the reflected signal
that we denote by z(z,t). Let us now consider the special case when the current
pulse is a step function given by I(t) = Iy for 0 < ¢ < 7 and I(t) = 0 for other
values of ¢t. The first term of the solution for this case is given by

I t Zd+’uot’
o (20,t) = UO—O/ dt’/ dz B(2), (13)
2T 0 24

for t <7 and

T t Zd-‘r’L)ot/
a!(zq,t) = UO—O/ dt'/ dz B(z), (14)
2T t—T Zd

for t > 7. Note that eq. (13) has been obtained earlier in ref. [1] and eq. (14) has
been earlier obtained in ref. [4]. We make some observations here. The second
integrals of the magnetic field in eqs (13) and (14) are actually proportional to the
transverse oscillation of the relativistic electron beam injected along the z-axis. In
eq. (13), the second integral is proportional to the transverse displacement of the
electron at z = zq+wvgt , when injected along z-axis with x = 0 at z = z4. Similarly,
in eq. (14), the second integral is proportional to the transverse displacement of the
electron at z = zq + vot, when injected along z-axis at z = zq with a displacement
along a-direction such that * = 0 at z = zq4 + vo(t — 7). In the limit 7 — 0, the
displacement x(zq,t) is given by

I vorly [FaTvol
' (2zq,t) = / dz B(z), (15)
2T /.,

which is proportional to the first integral of the magnetic field. Note that the above
equation is valid as long as there is no significant variation in the magnetic field
over the length vgr. In that case, the above equation is valid for any arbitrary
current pulse with charge IpT in a pulse.

We can draw some conclusions from the above results. If we want to perform
the measurement of the second integral of the magnetic field that is non-zero only
in the region (24 +d) < z < (2q +d + L), we should keep the current pulse
width 7 = (d + L) /v such that we can differentiate ! twice with respect to t in
eq. (13) to get B(z) for ¢t < 7. The contribution in the wire displacement due to
the first term in eq. (12) will be during d/vy < t < 2(d + L)/vo. During the period
0 < t < d/vg, there is no displacement in the wire at z = zq since there is no
magnetic field in the region zq < z < zq + d. The rise time of the current pulse
7, should be such that there is no significant variation in the magnetic field over a
length of vg7;.

Note that in eqs (13)—(15), the contribution due to reflection from the fixed end
is not included. The contribution from the reflection will be non-zero only for
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(2zq + d)/vo <t < (2zq + 2d 4+ 2L)/vg. Therefore, if we satisfy (2z4 — d) > 2L, we
will make sure that the reflected signal does not interfere with the incident signal.

We will discuss here briefly the case when the wire is fixed at both ends. The
first reflection from the left end will contribute during the period (2z4 + d) /vy <
t < (22q +2d + 2L) /v and the reflection from the right end will contribute during
the period (221 — 229 —d — L)/vg < t < (221 — 224 + L)/vo. The timing of the
further reflected signals can also be determined similarly. The design parameters
can thus be carefully chosen such that main signal does not interfere with the
reflected signals.

We will now discuss the effect of dispersion. The effect of dispersion on the wire
vibration in the pulsed wire method using eq. (5) has been discussed qualitatively
earlier in refs [3,7,8]. Here, we proceed for rigorous analysis by re-writing eq. (7)
in the following form by making a change of variable 2" = (2’ — 2)(kvg/w) + 2z and
then replacing 2" with 2/,

1 t , +vot , , o0 jelk) s
x(0,t) = / dt / dz'I(t—1t )/ dk A(k)e' ™o ~ . (16)
0

2o —wvot —o0

Here, we have also made a change in the order of integration. Note that we have
changed the coordinate of the detector to z = 0 from z = zq4, for simplification.
The fixed end of the wire is now at z = —zq in this changed coordinate system.
From the above equation, we find that if the undulator has a wave number k,,
the phase difference between the component having wave number &, and the one
having k = 0 given by [vpn(ku) — volkuL/vo after travelling a distance L, where
vph = w(k)/k is the phase velocity for the wave as a function of its wave number k.
The distortion due to dispersion is less significant if this phase difference is much
less than 27. This imposes the following condition on the maximum length Lax
of the wire

47T

Lm'lx T ar12
> < TR

(17)

The above expression has been derived assuming EMkEZ2/T < 1. Note that this
expression was derived earlier by Warren [1].

Next, we discuss the method for calculating the field integrals in the presence of
effects due to dispersion, when eq. (17) is not valid. If we compare eqs (12) and
(16), we observe that B(z) in eq. (12) is replaced with Beg(2) given by

oo je)
Bet(2) = / dk A(k)e' 552, (18)
—o0

It is more useful to write the above integral in the following form of Fourier trans-
form by making a change of variable k' = w(k)/vo and then replacing k" by k:

Bua(2) = / T kG, (19)

— 00

where
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AEM V2
1+ —k2—-1
\/ * T ]

[V N i

Note that for the limiting case EM/T — 0, G(k) — A(k). From the above ex-
pressions, it is clear that if we include the effect of dispersion due to stiffness in
the wire, the vibration in the wire is described by egs (13) and (14) where B(z) is
replaced with Beg(z) mentioned above. Hence, knowing the vibration in the wire,
we get the profile of Bg(z) by differentiating 27 (0,t) twice with respect to t. Once
Best(2) is known, G(k) can be calculated by taking inverse Fourier transform of
Beg(z). Having calculated G(k), A(k) can be calculated by the following equation,
which is obtained by inverting eq. (20):

T
Glk) = A k\/QEMk;Q

X

1/2
A4EM 4E2M?2 4EM 4E2M?2
2EM EM
\/Tkz\/l + ok

o (ifre Blie). o)

Having calculated A(k), B(z) can be obtained by taking its Fourier transform and
the field integrals can then be calculated. It is important to note here that the
absolute accuracy in the measurement of the profile of the magnetic field or the
field integral will be dependent on the accuracy with which the data are available
for £, M and T. The typical value of absolute accuracy possible using Hall probe is
better than 0.05%. It may often not be possible to achieve similar absolute accuracy
using the pulsed wire method due to limitation on the accuracy in the data for £, M
and T'. The data for F are available from the data sheet, but typically the absolute
accuracy may not be better than 1%. Similarly, M and T can be measured in
the laboratory, but the absolute accuracy may again not be better than 1%. Thus
the absolute accuracy achieved in the pulsed wire method may be poor compared
to the Hall probe technique and this will give rise to calibration error. However,
this is not a drawback in this technique since one can obtain a comparable relative
accuracy, which is more relevant for calculating the trajectory error arising due to
field error.

A(k) =

4. Conclusions

In this paper, we have given a rigorous analysis of the pulsed wire technique based on
the solution of the partial differential equation for the forced vibration of stretched
wire. We have discussed the time evolution of the vibration in the wire at the loca-
tion of the detector for various cases, taking reflection and dispersion into account.
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In the absence of dispersion, by measuring the vibration in the wire at a given
location for short and long current pulses, one can obtain the first and second field
integrals directly. Our analytical treatment allows us to take into account the effect
of dispersion in an exact manner, using which one can obtain the field integrals af-
ter processing the data on wire vibration as discussed in the previous section. Note
that due to several sources of error, e.g., error in the measurement of wire vibration,
background vibration already present in the wire, etc., the data on wire vibration
can become noisy. Even in such cases, where the data on the wire vibration are not
accurate enough for calculating the inverse Fourier transform and then the Fourier
transform after the data processing, one can simply calculate the expected wire
vibration for the theoretical field profile using eq. (16) and then compare this with
the observed wire vibration to obtain a qualitative estimate of the error in the field
profile. Our analysis will thus be useful in utilizing the pulsed wire technique for
characterizing the magnetic field profile in long undulators.

Appendix A: Solution of differential equation for the forced vibration

In this appendix, we will show that the solution given by eq. (7) satisfies eq. (5).
For this purpose, it is convenient to make a change of variable of integration in
eq. (7) and re-write it in the following form:

w(k)

T = —1 td ! dk —k o (tit/)d " AR () et* A
t) = t te™ = . 1
(Z’ ) ZM/O /,OO w(k)/ : ( ) ( )e ( )

P )

By differentiating eq. (A1), we get

Otz Pz 1 [
)Y ey LAy VY
0z*4 + 022 2#/0

></+Oo dk W(—EM/{‘*—TW)@, (A2)

— 00

Px 1 [t AR
_Mﬁ_ﬂ/o dt /_OO dk =L pw? (k)@
+oo

iw(k)
— / dk A(k)I(t)e™**, (A3)
where
@(k, Z,t,t/) _ ei(szrw(tft')) _ ei(szw(tft')). (A4)

Substituting eqs (A2) and (A3) in eq. (5), we can show that eq. (5) is satisfied.
Next, we show that if we satisfy A(—k) = —A(k), the boundary condition is
satisfied at z = 0. For this, we re-write eq. (7) for z = 0 as
sinwt’
—

1 ¢ / +ee /
J;(O,t):;/o dt /m dk A(R)I(t — 1) (A5)
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Since the integrand in the above equation is an odd function of k, the integral will
vanish. For the case, when the wire is fixed at both the ends, the displacement at
z = z1 is given by

sin wt’

t 400
z(z1,t) = % / dt’ / dk A(K)I(t — t')etk= (A6)
0 —00

w

The integrand in the above integral is again an odd function of k since A(—k) =
—A(k) and only discrete values of k are allowed which are equal to nm/z;, where
n is an integer as discussed in §3. The integral therefore vanishes, proving that
x(z1,t) = 0.
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