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Abstract. An improved algorithm is devised for using the (G′/G)-expansion method to
solve nonlinear differential-difference equations. With the aid of symbolic computation,
we choose a discrete nonlinear Schrödinger equation to illustrate the validity and advan-
tages of the improved algorithm. As a result, hyperbolic function solutions, trigonometric
function solutions and rational solutions with parameters are obtained, from which some
special solutions including the known solitary wave solution are derived by setting the
parameters as appropriate values. It is shown that the improved algorithm is effective and
can be used for many other nonlinear differential-difference equations in mathematical
physics.
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1. Introduction

Since the work of Fermi et al in the 1950s [1], the investigation of exact solutions
of nonlinear differential-difference equations (NLDDEs) has played a crucial role
in modelling many phenomena in different fields which include condensed matter
physics, biophysics and mechanical engineering. We can also encounter NLDDEs in
numerical simulation of soliton dynamics in high energy physics where they arise as
approximations of continuum models. Unlike difference equations which are fully
discretized, differential-difference equations (DDEs) are semi-discretized with some
(or all) of their spacial variables discretized while time is usually kept continuous. In
the past decades, many effective methods for obtaining exact solutions of nonlinear
evolution equations (NLEEs) have been presented, such as the inverse scattering
method [2], Hirota bilinear method [3], Bäcklund transformation [4], Painlevé ex-
pansion [5], sine–cosine method [6], homogeneous balance method [7], tanh-function
method [8], algebraic method [9], Jacobi elliptic function expansion method [10],
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F-expansion method [11], auxiliary equation method [12] and exp-function method
[13].

Recently, Wang et al [14] proposed a new method called the (G′/G)-expansion
method to look for travelling wave solutions of NLEEs. By using the (G′/G)-
expansion method, Wang et al [14,15] have successfully obtained hyperbolic func-
tion solutions, trigonometric function solutions and rational solutions of some im-
portant NLEEs. Later, Zhang et al [16] proposed a generalized (G′/G)-expansion
method to improve and extend Wang et al ’s work [14] for solving variable-coefficient
equations and high dimensional equations. Zhang [17] explored new application of
this method to some special NLEEs. Generally speaking, it is hard to generalize
one method for NLEEs to solve NLDDEs because of the difficulty to search for
iterative relations from indices n to n±1. More recently, by careful analysis, Zhang
et al [18] found the iterative relations between the lattice indices and devised an
algorithm for using the (G′/G)-expansion method to construct hyperbolic function
solutions and trigonometric function solutions of NLDDEs.

The present paper is motivated by the desire to develop and improve the work
made in [18]. With this purpose, we will propose an improved algorithm for using
the (G′/G)-expansion method to obtain not only hyperbolic function solutions and
trigonometric function solutions but also rational solutions of NLDDEs. In order
to illustrate the validity and advantages of the improved algorithm, we will apply
it to a discrete nonlinear Schrödinger equation [19]:

i
dun

dt
= (un+1 + un−1 − 2un)− |un|2(un+1 + un−1), (1)

where i =
√−1.

The rest of this paper is organized as follows. In §2, we describe the improved
algorithm for using the (G′/G)-expansion method to solve NLDDEs. In §3, we use
this algorithm to solve the discrete nonlinear Schrödinger equation (1). In §4, some
conclusions are given.

2. Description of the (G′/G)-expansion method for NLDDEs

In this section, we would like to recall the algorithm proposed in [18] and outline
the improved algorithm for using the (G′/G)-expansion method to solve NLDDEs
step by step. For a given system of M polynomial NLDDEs:

∆
(
un+p1(x), . . . , un+pk

(x), . . . , u′n+p1
(x), . . . , u′n+pk

(x), . . . ,

u
(r)
n+p1

(x), . . . , u(r)
n+pk

(x)
)

= 0, (2)

where the dependent variable u has M components ui,n, the continuous variable
x has N components xj , the discrete variable n has Q components ni, the k shift
vectors ps ∈ ZQ, and u(r)(x) denotes the collection of mixed derivative terms of
order r. The main steps of the (G′/G)-expansion method are outlined as follows:

Step 1. When we seek travelling wave solutions of eq. (2), the first step is to
introduce the wave transformation:
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un+ps(x) = Un+ps(ξn), ξn =
Q∑

i=1

dini +
N∑

j=1

cjxj + ζ, (3)

where the coefficients di, cj , and the phase ζ are all constants and s = 1, 2, . . . , k.
In this way, eq. (2) becomes

∆
(
Un+p1(ξn), . . . , Un+pk

(ξn), . . . , U ′
n+p1

(ξn), . . . , U ′
n+pk

(ξn), . . . ,

U
(r)
n+p1

(ξn), . . . , U (r)
n+pk

(ξn)
)

= 0. (4)

Step 2. We propose the following series expansion as a solution of eq. (4):

Un(ξn) =
m∑

l=−m

αl

(
G′(ξn)
G(ξn)

)l

, α2
m + α2

−m 6= 0, (5)

where αl (l = 0, 1, 2, . . . , m) are constants to be determined later, G(ξn) satisfies a
second-order linear ordinary differential equation (LODE):

d2G(ξn)
dξ2

n

+ λ
dG(ξn)

dξn
+ µG(ξn) = 0, (6)

where λ and µ are arbitrary constants. Using the general solutions of eq. (6), we
have

G′(ξn)
G(ξn)

=





√
λ2 − 4µ

2


C1 sinh(

√
λ2−4µ

2 ξn) + C2 cosh(
√

λ2−4µ

2 ξn)

C1 cosh(
√

λ2−4µ

2 ξn) + C2 sinh(
√

λ2−4µ

2 ξn)


− λ

2
,

when λ2 − 4µ > 0,

√
4µ− λ2

2


−C1 sin(

√
4µ−λ2

2 ξn) + C2 cosh(
√

4µ−λ2

2 ξn)

C1 cosh(
√

4µ−λ2

2 ξn) + C2 sinh(
√

4µ−λ2

2 ξn)


− λ

2
,

when λ2 − 4µ < 0,

C2

C1 + C2ξn
− λ

2
, when λ2 − 4µ = 0.

(7)

With the help of eq. (7) and the properties of hyperbolic functions and trigono-
metric functions, we can easily construct a uniform formula:

G′(ξn±ps)
G(ξn±ps)

=

√
δ + ε(λ2 − 4µ)

2

×




2√
δ+ε(λ2−4µ)

(
G′(ξn)
G(ξn) + λ

2

)
± εf(

√
δ+ε(λ2−4µ)

2 ϕs)

1±
(

2√
δ+ε(λ2−4µ)

(
G′(ξn)
G(ξn) + λ

2

))
f(
√

4δ+ε(λ2−4µ)

2 ϕs)


− λ

2
, (8)
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where ε = {1,−1, 0}, δ = {4, 0}, ϕs = ps1d1 + ps2d2 + · · · + psQdQ, psi is the ith
component of shift vector ps, and

f

(√
δ + ε(λ2 − 4µ)

2
ϕs

)

=





tanh

(√
λ2 − 4µ

2
ϕs

)
, when ε = 1, δ = 0, λ2 − 4µ > 0,

tan

(√
4µ− λ2

2
ϕs

)
, when ε = −1, δ = 0, λ2 − 4µ < 0,

ϕs, when ε = 0, δ = 4, λ2 − 4µ = 0.

(9)

Thus we have

Un(ξn±ps) =
m∑

l=−m

αl

[√
δ + ε(λ2 − 4µ)

2

×




2√
δ+ε(λ2−4µ)

(
G′(ξn)
G(ξn) + λ

2

)
± εf(

√
δ+ε(λ2−4µ)

2 ϕs)

1±
(

2√
δ+ε(λ2−4µ)

(
G′(ξn)
G(ξn) + λ

2

))
f(
√

δ+ε(λ2−4µ)

2 ϕs)


− λ

2




l

.

(10)

Step 3. Determine the degree m of eqs (5) and (10) by balancing the highest-order
nonlinear term(s) and the highest-order partial derivative of Un(ξn) in eq. (4). It
should be noted that the leading terms of Un(ξn+ps) (ps 6= 0) will not affect the
balance because we are interested in balancing the terms of (G′(ξn)/G(ξn)).

Step 4. Substituting eqs (5) and (10) given the value of m determined in Step 3
along with (6) into (4) and clearing the denominator and collecting all terms with
the same order of (G′(ξn)/G(ξn)) together, the left-hand side of (4) is converted into
a polynomial in (G′(ξn)/G(ξn)). Then setting each coefficient of this polynomial
to zero, we will derive a set of algebraic equations, from which the constants αl, di

and cj can be explicitly determined using Mathematica.

Step 5. Using the results obtained in the above steps, we can finally obtain exact
solutions of eq. (2).

Remark 1. It can be easily found that when α−1 = α−2 = · · · = α−m = 0 and
δ = 0, the formula (8) exactly becomes the formula (9) constructed in [18]. More
importantly, formula (8) contains the rational solution C2

C1+C2ξn
− λ

2 as a special
case so that it can be used to obtain not only hyperbolic function solutions and
trigonometric function solutions but also rational solutions of NLDDEs if such
formal solutions exist.
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3. Exact travelling wave solutions of eq. (1)

In this section, we apply the improved algorithm developed in §2 to eq. (1). To
extend this improved algorithm to eq. (1), we use the transformations [19]

un = eiθnvn(ξn), θn = pn + qt + ς, ξn = d1n + c1t + ζ, (11)

and

un+1 = eiθneipvn+1(ξn), un−1 = eiθne−ipvn−1(ξn), (12)

where p, q and ς are all constants. With the expression e±ip = cos(p)± i sin(p), eq.
(1) is reduced to

−qvn − cos(p)(1− v2
n)(vn+1 + vn−1) + 2vn

+ i[c1v
′
n − sin(p)(1− v2

n)(vn+1 − vn−1)] = 0, (13)

further separating the real and imaginary parts, we get

qvn + cos(p)(1− v2
n)(vn+1 + vn−1)− 2vn = 0, (14)

c1v
′
n − sin(p)(1− v2

n)(vn+1 − vn−1) = 0. (15)

Suppose the solutions of eqs (14) and (15) are in the form of eqs (5) and (10),
and according to the homogeneous balance procedure, let eqs (14) and (15) have
the following formal solution:

vn =
1∑

l=−1

αl

(
G′(ξn)
G(ξn)

)l

, α2
1 + α2

−1 6= 0, (16)

vn+1 =
1∑

l=−1

αl

[√
δ + ε(λ2 − 4µ)

2

×




2√
δ+ε(λ2−4µ)

(
G′(ξn)
G(ξn) + λ

2

)
+ εf(

√
δ+ε(λ2−4µ)

2 d1)

1 +
(

2√
δ+ε(λ2−4µ)

(
G′(ξn)
G(ξn) + λ

2

))
f(
√

δ+ε(λ2−4µ)

2 d1)


− λ

2




l

, (17)

vn−1 =
1∑

l=−1

αl

[√
δ + ε(λ2 − 4µ)

2

×




2√
δ+ε(λ2−4µ)

(
G′(ξn)
G(ξn) + λ

2

)
− εf(

√
δ+ε(λ2−4µ)

2 d1)

1−
(

2√
δ+ε(λ2−4µ)

(
G′(ξn)
G(ξn) + λ

2

))
f(
√

δ+ε(λ2−4µ)

2 d1)


− λ

2




l

. (18)
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Substituting (16)–(18) along with (6) into eqs (14) and (15), and clearing the
denominator and collecting all terms with the same order of (G′(ξn)/G(ξn)) to-
gether, the left-hand sides of eqs (14) and (15) are converted into two polynomials
in (G′(ξn)/G(ξn)). Setting each coefficient of these polynomials to zero, we derive
a set of algebraic equations for α0, α1, d1 and c1. Solving the set of algebraic
equations using Mathematica, we have

Case 1:

α0 = ±λ tanh(
√

λ2−4µ

2 d1)√
λ2 − 4µ

, c1 =
4 sin(p) tanh(

√
λ2−4µ

2 d1)√
λ2 − 4µ

, (19)

α1 = ±2 tanh(
√

λ2−4µ

2 d1)√
λ2 − 4µ

, q = 2− 2 cos(p) sech2

(√
λ2 − 4µ

2
d1

)
,

(20)

α−1 = 0, p = p, d1 = d1, ε = 1, δ = 0, λ2 − 4µ > 0. (21)

Case 2:

α0 = ±λ tan(
√

4µ−λ2

2 d1)√
4µ− λ2

, c1 =
4 sin(p) tan(

√
4µ−λ2

2 d1)√
4µ− λ2

, (22)

α1 = ±2 tan(
√

4µ−λ2

2 d1)√
4µ− λ2

, q = 2− 2 cos(p) sec2

(√
4µ− λ2

2
d1

)
, (23)

α−1 = 0, p = p, d1 = d1, ε = −1, δ = 0, λ2 − 4µ < 0. (24)

Case 3:

α0 = ±d1λ

2
, c1 = 2d1 sin(p), α1 = ±d1, d1 = d1, p = p, (25)

α−1 = 0, q = 2− 2 cos(p), ε = 0, δ = 4, λ2 − 4µ = 0. (26)

Case 4:

α0 = ±d1λ

2
, c1 = 2d1 sin(p), α1 = 0, d1 = d1, p = p, (27)

α−1 = ±d1λ
2

4
, q = 2− 2 cos(p), ε = 0, δ = 4, λ2 − 4µ = 0. (28)
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When λ2 − 4µ > 0, from Case 1 we obtain a hyperbolic function solution of eq.
(1):

un = ±eiθn tanh

(√
λ2 − 4µ

2
d1

)

×

C1 sinh(

√
λ2−4µ

2 ξn) + C2 cosh(
√

λ2−4µ

2 ξn)

C1 cosh(
√

λ2−4µ

2 ξn) + C2 sinh(
√

λ2−4µ

2 ξn)


 , (29)

where

θn = pn +

[
2− 2 cos(p) sech2

(√
λ2 − 4µ

2
d1

)]
t + ς,

ξn = d1n +
4 sin(p) tanh(

√
λ2−4µ

2 d1)√
λ2 − 4µ

t + ζ.

If we set µ = λ2−4
4 and C2 = 0, solution (29) becomes

un = ±ei{pn+[2−2 cos(p) sech2(d1)]t+ς} tanh(d1)
×tanh[d1n + 2 sin(p) tanh(d1)t + ζ], (30)

which is the dark solitary wave solution found by Dai and Zhang, i.e. the solution
(20) in [19].

Setting again µ = (λ2 − 4)/4 and C1 = 0, solution (29) becomes

un = ±ei{pn+[2−2 cos(p) sech2(d1)]t+ς} tanh(d1)
×coth[d1n + 2 sin(p) tanh(d1)t + ζ], (31)

which is a singular travelling wave solution.
When λ2 − 4µ < 0, from Case 2 we get a trigonometric function solution of eq.

(1):

un = ±eiθn tan

(√
4µ− λ2

2
d1

)

×

−C1 sin(

√
4µ−λ2

2 ξn) + C2 cos(
√

4µ−λ2

2 ξn)

C1 cos(
√

4µ−λ2

2 ξn) + C2 sin(
√

4µ−λ2

2 ξn)


 , (32)

where

θn = pn +

[
2− 2cos(p) sec2

(√
4µ− λ2

2
d1

)]
t + ς,

ξn = d1n +
4 sin(p) tan(

√
4µ−λ2

2 d1)√
4µ− λ2

t + ζ.
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Figure 1. Plots of solution (32) with (+) branch for parameters d1 = 1,
p = 3, ζ = 0, ς = 0, C1 = 1, C2 = 4, λ = 0.1, µ = 0.0125. (a) t = 0.5, (b)
t = 0.8.

Figure 1 shows the asymptotic properties of solution (32) for two times. When
t = 1.94295, the sharp spike is |un|2 = 5.17475×1013 at n = −3. Different from the
continuous case, each exotic wave in figure 1 does not exhibit a singular property,
although solution (32) possesses singular points. Such exotic waves with similar
property were found in [20]. The parameters d1 and p determine the velocity and
frequency of the travelling wave

v =
4 sin(p) tan(

√
4µ−λ2

2 d1)√
4µ− λ2

, (33)

ω = 2− 2 cos(p) sec2

(√
4µ− λ2

2
d1

)
, (34)

which have different properties from those of [20] (see figure 2).
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Figure 2. Plots of (a) frequency ω and (b) wave velocity v of solution (32)
for parameters λ = 0.1, µ = 0.0125.

Similarly, if we set µ, C1 and C2 as some appropriate values, solution (32) gives
the following formal periodic wave solutions:

un = ∓ei{pn+[2−2 cos(p) sec2(d1)]t+ς}

×tan(d1) tan[d1n + 2 sin(p) tan(d1)t + ζ], (35)

and

un = ±ei{pn+[2−2 cos(p) sec2(d1)]t+ς} tan(d1)
×cot[d1n + 2 sin(p) tan(d1)t + ζ]. (36)

When λ2 − 4µ = 0, from Cases 3 and 4 we get two rational solutions of eq. (1):

un = ±ei{pn+[2−2 cos(p)]t+ς} d1C2

C1 + C2ξn
, (37)
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where ξn = d1n + 2d1 sin(p)t + ζ.

un = ±ei{pn+[2−2 cos(p)]t+ς} d1C2λ

2C2 − C1λ− C2λξn
, (38)

where ξn = d1n + 2d1 sin(p)t + ζ. Obviously, solution (38) is equivalent to (37).
However, if we use the improved algorithm to solve the first lattice equation [18]:

∂2un

∂x∂t
=

(
∂un

∂t
+ 1

)
(un−1 − 2un + un+1), (39)

besides the hyperbolic function solutions and trigonometric function solutions re-
ported in [18], another two rational solutions of eq. (39) can be obtained as follows:

un = α0 − d2
1λ

2c2
+

d2
1C2

c2(C1 + C2ξn)
, (40)

where ξn = d1n + d2
1

c2
x + c2t + ζ.

un = α0 +
d2
1C2(1 + α−1c2)
c2(C1 + C2ξn)

+
α−1(C1 + C2ξn)

C2
, (41)

where ξn = d1n + d2
1(1+α−1c2)

c2
x + c2t + ζ. Solution (41) is more general than (40)

because of the arbitrary constant α−1.
In addition, if we consider the second lattice equation [18]:

dun

dt
= (α + βun + γu2

n)(un−1 − un+1), (42)

another one rational solution of eq. (42) can be obtained as follows:

un = − β

2γ
± d1C2

√
β2 − 4αγ

2γ(C1 + C2ξn)
, (43)

where ξn = d1n + d1(β
2−4αγ)
2γ t + ζ.

Dai and Wang [20] devised a general algorithm for using the exp-function method
[13] to derive exact travelling wave solutions of NLDDEs. By applying the devised
algorithm to eq. (1), Dai and Wang have successfully obtained some hyperbolic
function solutions. We would like to point out here that solutions (37) or (38),
(40), (41) and (43) cannot be obtained by the methods [18,20]. To the best of our
knowledge, these solutions with arbitrary parameters are novel. It illustrates that
the improved algorithm proposed in this paper is effective and more powerful for
NLDDEs.

Remark 2. All solutions presented in this paper have been checked with Mathemat-
ica by putting them back into the original eqs (1), (39) and (42), respectively.
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4. Conclusion

The (G′/G)-expansion method is first developed and improved to obtain not only
hyperbolic function solutions and trigonometric function solutions but also to ob-
tain rational solutions of NLDDEs owing to the improved algorithm devised in
this paper. In order to illustrate the validity and advantages of the improved al-
gorithm, we apply it to the discrete nonlinear Schrödinger equation. As a result,
hyperbolic function solutions, trigonometric function solutions and rational solu-
tions with parameters are obtained, from which some special solutions including
the known solitary wave solution are derived by setting appropriate values for the
parameters. These obtained solutions with free parameters may be important to
explain some physical phenomena. Considering the connection between the method
proposed in this paper and Hirota bilinear method [21] and similarity reductions
[22], we can conclude that these methods have a common point. That is, reduc-
ing the given NLDDE(s) which are difficult to solve, into solvable equation(s) by
using suitable transformation(s). The paper shows that the improved algorithm is
effective and more powerful and it can be used for other NLDDEs in mathemati-
cal physics, for instance the discrete mKdV equation [23], the Toda equation [24],
the modified Volterra lattice [25], the Ablow–Ladik lattice equations [26], and so
on. Employing the improved algorithm to study these equations is our task in the
future.
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