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Harmonic oscillator in Snyder space:
The classical case and the quantum case
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Abstract. The harmonic oscillator in Snyder space is investigated in its classical and
quantum versions. The classical trajectory is obtained and the semiclassical quantization
from the phase space trajectories is discussed. An effective cut-off to high frequencies is
found. The quantum version is developed and an equivalent usual harmonic oscillator is
obtained through an effective mass and an effective frequency introduced in the model.
This modified parameters give us a modified energy spectrum also.
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1. Introduction

Today, the idea that the space could be non-commutative has many takers. The
non-commutativity is usually set through a constant parameter [1–3]. But there
exists another more general formulation called the Snyder space [4]. Snyder inves-
tigated these ideas long ago and built a non-commutative Lorentz invariant space-
time where the non-commutativity of space operators is proportional to non-linear
combinations of phase space operators through a free parameter l, that is usually
identified with the Planck longitude lp =

√
G/c~. Kontsevich [5], worked on these

kinds of space and since then, Snyder-like spaces in the sense of non-commutativity
are of ever-increasing interest. Snyder space is also interesting because it can be
mapped to the k-Minkowski space-time [6]. This space can be canonically and el-
egantly obtained in its classical version through a Lagrangian and Hamiltonian
approach [7], and a dimensional reduction from a (D + 1, 2) space with two time
dimensions, to a (D, 1) space with just one time dimension [8].

Nowadays Snyder space is increasingly interesting because it could be seen as an
environment where it could be possible to quantize gravity. In fact, it is possible
to find a plausible explanation to the Bekenstein conjecture for the area spectrum
of a black hole horizon through the area quantum in this kind of space [9].
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In this paper the harmonic oscillator is analysed in its classical and quantum
versions. The quantum version of this simple but fundamental system was studied
in [10], but the treatment here is simpler and we do not need to bet about the right
operators and despite that, we can probably shed some light in applications to
problems like infinities in quantum field theory (QFT). The importance of building
a well-defined harmonic oscillator in this space is that it could be possible to develop
a QFT with very desirable properties like a cut-off for high frequencies in order to
avoid non-renormalizable infinities. Furthermore, in the paper it is shown that we
can build a harmonic oscillator with an effective mass related to the l parameter.

The paper is organized as follows. In §2, the classical version is investigated
and some possible quantum consequences postulated, in §3 the quantum version is
developed and the energy spectra are obtained. Finally the results are discussed
in §4.

2. The classical case

Classical n dimensional Snyder space is characterized by its non-linear commutation
relation between the variables of the phase space:

{qi, qj} = −l2Lij , (1)

{qi, pj} = δij − l2pipj , (2)

{pi, pj} = 0, (3)

where l is a tiny constant parameter (usually identified with Planck longitude), that
measures the deformation introduced in the canonical Poisson brackets, and Lij ,
the angular momentum.

Let us consider the usual Hamiltonian of a harmonic oscillator:

H =
1
2
p2 +

ω2

2
q2, (4)

where m = 1, so ω2 = k. The canonical equations are

q̇ = {q, H} = p− l2p3, (5)

and for p:

ṗ = {p,H} = −ω2q + ω2l2qp2. (6)

If we solve p(q), we find the usual relation p2 + ω2q2 = ω2. So the orbits in the
phase space are untouched after the deformation of the Poisson brackets.

Solving the simultaneous eqs (5) and (6) we obtain for q:

q = ± tan{(ωt + d)
√

1− l2ω2}√
1

1−l2ω2 + tan2{(ωt + d)
√

1− l2ω2}
, (7)
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Figure 1. Plot for the two branches of Snyder q(t) with l = 10−5 and
ω = 8.5 · 10−4 (continuous line), and for normal q(t) (dashed line).

Figure 2. Plot for the two branches of Snyder p(t) with l = 10−5 and
ω = 8.5 · 10−4 (continuous line), and for normal p(t) (dashed line).

where d is a suitable constant in order to achieve the initial condition q(t = 0) = 1,
and p can be expressed in terms of q:

p = ±ω
√

1− q2. (8)

Figures 1 and 2 show the behaviour of the positions q and momentum p. We can
see from q graph, that Snyder oscillator is periodic but contains harmonics that
deform the trajectory. Furthermore, it is possible to see that the Snyder oscillator
has a different equivalent period from the normal one.

Another conspicuous feature is that ω = 1/l is effectively a cut-off to high fre-
quencies. Indeed this is a good news in the search of possible QFT theory in Snyder
space, because there is some hope of avoiding infinities.

Because the orbits are not affected by the non-linear version of Poisson brack-
ets, we expect that the energy spectra from the Sommerfeld–Wilson quantization
method

∫
p dq = n~, should formally be the same as that of the linear oscillator:

En = n~w, but as we have seen, the real equivalent period is modified.
Of course, Snyder oscillator is no longer an expression in single sin or cos func-

tions, i.e. it is not a pure oscillator, but we still can express it as a Fourier transform
and formulate it as a linear infinite combination of harmonics of frequency ω. That
is, the single Snyder oscillator looks like a set of normal coupled oscillators.
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In fact, using the fact that l2 must be considered as a tiny parameter in relation
with all the other quantities, we can use a perturbation method, among others, to
solve these equations.

Let us start with the usual solution to p:

p0 = −ω sin(ωt), (9)

where we have normalized the initial q perturbation, that is, q(t = 0) = 1. With
p0, we can integrate q̇ in order to obtain the first order q1:

q1(t) =
(

1− 3
4
l2ω2

)
cos(ωt) +

1
12

l2ω2 cos(3ωt) + q0
1 , (10)

where q0
1 is the constant evaluated in order of having the initial value of q. Now,

we can introduce q1 in (6) and integrate to obtain p1

p1(t) =
(
−1 + l2ω2 − 5

24
l4ω5

)
sin(ωt)

+
(
−1

9
l2ω3 +

11
144

l4ω5

)
sin(3ωt)

− 1
240

l4ω5 sin(5ωt), (11)

and so on. The method gives us, as we expected, the expansion in terms of harmonic
functions in harmonic frequencies of ω.

3. The quantum case

After the Dirac quantization recipe, we can postulate the commutation relations of
the Snyder space:

[Q̂i, Q̂j ] = −il2L̂ij , (12)

[Q̂i, P̂j ] = iδij − il2P̂iP̂j , (13)

[P̂i, P̂j ] = 0. (14)

Equation (12) is a non-linear version of the usual non-commutativity one, where
the commutator of the position operators is proportional to a constant [2,3]. Here
it is proportional to the angular momentum operator, L̂ij . Equation (13) is related
to the different models with generalized commutation relations [11–13].

To study the one-dimensional harmonic oscillator we start considering a standard
Hamiltonian:

Ĥ =
1

2m
P̂ 2 +

1
2
mω2X̂2. (15)
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We define the usual creation and annihilation operators, where ~ = 1:

a =
√

mω

2
Q̂ + i

√
1

2mω
P̂ , (16)

a† =
√

mω

2
Q̂− i

√
1

2mω
P̂ . (17)

Using the commutation rules between operators of position and momentum, the
commutation rules of the operators a and a† are [a, a] = [a†, a†] = 0, and

[a, a†] = 1− l2P̂ 2 = 1 +
l2

2
(a† − a)2. (18)

Writing the Hamiltonian in terms of the creation and annihilation operators and
using the commutation relation between a and a†, we obtain

H = ω

(
a†a +

1
2

)
+

ωl2

2
(a†a† − a†a− aa† + a2). (19)

Due the structure of the Hamiltonian, |n〉 is no longer an eigenvalue of the Hamil-
tonian. In fact

H|n〉 = ω

{
n

[
1− l2

(1 + l2)

]
+

1
2

[
1 +

l2

(1 + l2)

]}
|n〉

+ω

{
l2

2(1 + l2)
√

n + 1
√

n + 2
}
|n + 2〉

+ω

{
l2

2(1 + l2)
√

n
√

n− 1
}
|n− 2〉. (20)

So, the Snyder oscillator mixes states as we expected from the classical version.
But, encouraged by the semiclassical quantization that says that we could find a

standard spectrum of the energy, we will use a QFT trick: because the extra term
in the Hamiltonian induced by the non-linearity of the commutators of a and a†

is proportional to the dynamic term, we can add a counter term to the original
Hamiltonian:

H̃ =
1

2m
P̂ 2 +

1
2
mω2X̂2 +

l2

2
P̂ 2. (21)

Now, it is possible to define a new mass parameter, m̃ = m/(1+ml2) and modify
the frequency, ω̃ = ω

√
(1 + ml2), then H̃ becomes

H̃ =
1

2m̃
P̂ 2 +

1
2
m̃ω̃2X̂2. (22)

This Hamiltonian has an eigenvector |n− 2〉 and an eigenvalue n, and its spectra
is
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E = ω̃

(
n +

1
2

)
. (23)

This mass renormalization-like procedure allows us to see the Snyder oscillator as
the usual one, at least in the energy spectra, but with an effective mass. The energy
spectra have been modified due the l parameter. So, the zero energy Ẽ0 = ω̃/2 and
∆E = ω̃ (remember that ~ = 1).

4. Discussion and outlook

In this work we have found the classical trajectory of an oscillator in Snyder space
and found that we can see it as a set of coupled oscillators that can be described
by an expansion in harmonic functions in the harmonic frequencies of ω. We found
also that there is a high-frequency cut-off, because beyond it the oscillator has
no response. Due to this, we can hope that infinities in QFT theories could be
avoided in Snyder space. Furthermore, we could see that the Sommerfeld–Wilson
quantization method indicates that the spectra should be formally like the usual
harmonic oscillator, and consequently in the quantum formulation, we saw that the
oscillator in this space effectively mixes states, but through a QFT of mass renor-
malization, we could build a standard harmonic oscillator with an energy spectrum
modified due the presence of the non-commutative parameter l. We expect, in the
following, to couple infinite oscillators in order to built an effective QFT in Snyder
space. On the other hand, it will be worth investigating the movement of integrals
of these kinds of systems in higher dimensions and, as an applied case, to study the
calculation of the hydrogen atom spectra and the shift in the energy spectrum.

Acknowledgements

The author acknowledges the referee for useful suggestions in order to improve the
presentation of the results of this paper and suggestions to continue the research.
This paper was supported by Grant UTA No. 4722-09

References

[1] C Duval and P A Horvathy, Phys. Lett. B479, 284 (2000), arXiv:hep-th/0002233
[2] V P Nair and A P Polychronakos, Phys. Lett. B505, 267 (2001), arXiv:hep-

th/0011172
[3] J M Carmona, J L Cortes, J Gamboa and F Mendez, J. High Enery Phys. 0303, 058

(2003), arXiv:hep-th/0301248
[4] H S Snyder, Phys. Rev. 71, 38 (1947)
[5] M Kontsevich, Lett. Math. Phys. 66, 157 (2003), qalg/9709040
[6] J Kowalski-Glikman and S Nowak, Int. J. Mod. Phys. D12, 299 (2003), arXiv:hep-

th/0204245
[7] Rabin Banerjee, S Kulkarni and S Samanta, J. High Energy Phys. 0605, 077 (2006),

arXiv:hep-th/0602151

174 Pramana – J. Phys., Vol. 74, No. 2, February 2010



Harmonic oscillator in Snyder space

[8] Juan M Romero and Adolfo Zamora, Phys. Phys. Rev. D70, 105006 (2004),
arXiv:hep-th/0408193

[9] Juan M Romero and Adolfo Zamora, Phys. Lett. B661, 11 (2008), arXiv:hep-
th/0802.1250

[10] L N Chang, D Minic, N Okamura and T Takeuchi, Phys. Rev. D66, 026003 (2002)
[11] C N Yang, Phys. Rev. 72, 874 (1947)
[12] A Kempf, G Mangano and R B Mann, Phys. Rev. D52, 1108 (1995)
[13] Hector Calisto and Carlos Leiva, Int. J. Mod. Phys. D16(5), 927 (2007), arXiv:hep-

th/0509227

Pramana – J. Phys., Vol. 74, No. 2, February 2010 175


