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wave equation

AIYONG CHEN1,2,∗, JIBIN LI1, CHUNHAI LI2 and YUANDUO ZHANG3

1Center of Nonlinear Science Studies, Kunming University of Science and Technology,
Kunming, Yunnan, 650093, People’s Republic of China
2School of Mathematics and Computing Science, Guilin University of Electronic
Technology, Guilin, Guangxi, 541004, People’s Republic of China
3Foundation Department, Southwest Forestry University, Kunming, Yunnan, 650224,
People’s Republic of China
∗Corresponding author. E-mail: aiyongchen@163.com

MS received 7 October 2008; revised 1 July 2009; accepted 9 September 2009

Abstract. The bifurcation theory of dynamical systems is applied to an integrable non-
linear wave equation. As a result, it is pointed out that the solitary waves of this equation
evolve from bell-shaped solitary waves to W/M-shaped solitary waves when wave speed
passes certain critical wave speed. Under different parameter conditions, all exact explicit
parametric representations of solitary wave solutions are obtained.
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1. Introduction

The KdV equation

ut = 6uux + uxxx (1.1)

is a well-known nonlinear partial differential equation originally formulated to model
unidirectional propagation of shallow water gravity waves in one dimension [1]. It
describes the long time evolution of weakly nonlinear dispersive waves of small but
finite amplitude. The original experimental observations of Russell [2] in 1844 and
the pioneering studies by Korteweg and de Vries [1] in 1895 showed the balance
between the weak nonlinear term 6uux and the dispersion term uxxx which gave
rise to unidirectional solitary wave.
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Because of its role as a model equation in describing a variety of physical systems,
the KdV equation has been widely investigated in recent decades. Some similar
models similar to the KdV equations were proposed in [3,4]. In 1997, Rosenau [4]
studied the nonanalytic solitary waves of the following integrable nonlinear wave
equation:

(u− uxx)t = aux +
1
2
[(u2 − u2

x)(u− uxx)]x, (1.2)

where a(6= 0) is a constant. The equation is obtained through a reshuffling procedure
of the Hamiltonian operators underlying the bi-Hamiltonian structure of mKdV
equations

ut = uxxx +
3
2
u2ux. (1.3)

Equation (1.2) supports peakons. Among the nonanalytic entities, the peakon, a
soliton with a finite discontinuity in gradient at its crest, is perhaps the weakest
nonanalyticity observable by the eye. In [4], the author has studied the peakons of
eq. (1.2) and pointed out that the interaction of nonlinear dispersion with nonlinear
convection generates exactly compact structures. Unfortunately, as the author has
pointed out in [4], ‘a lack of proper mathematical tools makes this goal at the
present time pretty much beyond our reach’. In this paper, we shall point out that
the existence of singular curves in the phase plane of the travelling wave system
is the original reason for the appearance of nonsmooth travelling wave solutions in
our travelling wave models by using the theory of dynamical systems.

Recently, Qiao [5] proposed the following completely integrable wave equation:

(u− uxx)t + (u− uxx)x(u2 − u2
x) + 2(u− uxx)2ux = 0, (1.4)

where u is the fluid velocity and subscripts denote the partial derivatives. This
equation can also be derived from the two-dimensional Euler equation using the
approximation procedure. The author obtained the so-called ‘W/M’-shaped-peak
solitons. More recently, Li and Zhang [6] used the method of dynamical systems
to eq. (1.4), and explained why the so-called ‘W/M’-shaped-peak solitons can be
created.

In this paper, we study the solitary wave solutions of eq. (1.2) using the bifur-
cation theory of dynamical systems, which was developed by Li et al in [6–9]. We
show that there exist smooth solitary wave solutions of eq. (1.2) when some pa-
rameter conditions are satisfied. In addition, we point out that the solitary waves
of eq. (1.2) evolve from bell-shaped solitary waves to W/M-shaped solitary waves
when wave speed passes certain critical wave speed.

To investigate the travelling wave solutions of eq. (1.2), substituting u = u(x −
ct) = u(ξ) into eq. (1.2), we obtain

−c(φ− φ′′)′ = aφ′ +
1
2
[(φ2 − φ′2)(φ− φ′′)]′, (1.5)

where φ′ is the derivative with respect to ξ. Integrating eq. (1.5) once and neglect-
ing the constant of integration we find

20 Pramana – J. Phys., Vol. 74, No. 1, January 2010



From bell-shaped solitary wave to W/M-shaped solitary wave solutions

(φ2 − φ′2 + 2c)φ′′ = φ3 + 2(a + c)φ− φφ′2. (1.6)

Clearly, eq. (1.6) is equivalent to the two-dimensional system





dφ

dξ
= y,

dy

dξ
=

φ(φ2 − y2 + 2(a + c))
φ2 − y2 + 2c

,
(1.7)

which has the first integral

H(φ, y) = (y2 − φ2 − 2c)2 + 4aφ2 = h. (1.8)

On the singular curve φ2−y2+2c = 0, system (1.7) is discontinuous. Such a system
is called a singular travelling wave system by Li and Zhang [6].

2. Bifurcations of phase portraits of system (1.7)

In this section, we discuss bifurcations of phase portraits of system (1.7) and the
existence of critical wave speed.

It is known that system (1.7) has the same phase portraits as the system




dφ

dζ
= y(φ2 − y2 + 2c),

dy

dζ
= φ(φ2 − y2 + 2(a + c)),

(2.1)

where dξ = (φ2 − y2 + 2c)dζ, for φ2 − y2 + 2c 6= 0.
The distribution of the equilibrium points of system (2.1) is as follows.
(1) For c < 0, when a+c ≥ 0, system (2.1) has only one equilibrium point O(0, 0);

when a + c < 0, system (2.1) has three equilibrium points O(0, 0) and P±(±φ1, 0),
where φ1 =

√
−2(a + c).

(2) For c > 0, when a + c ≥ 0, system (2.1) has three equilibrium points
O(0, 0) and S±(0,±√2c); when a + c < 0, system (2.1) has five equilibrium points
O(0, 0), P±(±φ1, 0) and S±(0,±√2c).

In addition, from eq. (1.8), we have

h0 = H(0, 0) = 4c2,

h1 = H(±φ1, 0) = 8a(a− c),

h2 = H(0,±
√

2c) = 0. (2.2)

It is known that a solitary wave solution of eq. (1.2) corresponds to a homoclinic
orbit of system (2.1). Obviously, for c < 0, a > 0, a+c < 0, there exists a homoclinic
orbit of system (2.1) homoclinic to O(0, 0) defined by H(φ, y) = h0. Hence, we are
only interested in the case c < 0, a > 0, a + c < 0.
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Figure 1. The change of phase portraits of system (2.1) for c < 0, a > 0.
(1-1) −a ≤ c < 0, (1-2) −2a < c < −a, (1-3) c = −2a, (1-4) c < −2a.

PROPOSITION 2.1
Suppose that c < 0, a > 0, a+c < 0, we have the following conclusions about critical
wave speed c∗ = −2a:
(1) For c∗ < c < −a, the homoclinic orbit defined by H(φ, y) = h0 does not intersect
the singular curve φ2 − y2 + 2c = 0. Equation (1.2) has two smooth bell-shaped
solitary wave solutions.
(2) For c < c∗, the homoclinic orbit defined by H(φ, y) = h0 intersects the singular
curve φ2 − y2 + 2c = 0. Equation (1.2) has a W-shaped solitary wave and an
M-shaped solitary wave solutions.

The phase portraits of system (2.1) can be shown in figure 1 for c < 0, a > 0.

3. Solitary wave solutions of eq. (1.2)

In this section, we will give some exact parametric representations of solitary wave
solutions of eq. (1.2). We always assume that c < 0, a > 0, a + c < 0.
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3.1 The case −2a < c < −a

In this case, the homoclinic orbit defined by H(φ, y) = h0 has no intersection point
with the hyperbola φ2 − y2 + 2c = 0. Thus, eq. (1.2) has a smooth bell-shaped
solitary wave solution of valley-type and a smooth solitary wave solution of peak-
type.

To find the exact explicit parametric representations of solitary wave solutions,
we have the algebraic equation of homoclinic orbit

y2 = φ2 + 2c± 2
√

c2 − aφ2. (3.1)

The signs before the term 2
√

c2 − aφ2 are dependent on the interval of φ. Under the
condition −2a < c < −a, for φ ∈ (−2

√
−(a + c), 2

√
−(a + c)), we need to take +

before the term 2
√

c2 − aφ2. Setting ψ2 = c2−aφ2, we have y2 = 1
a (ψ−ψ1)(ψ2−ψ),

where ψ1 = −c, ψ2 = 2a + c. By the first equation of system (1.7), we obtain
the following exact parametric representations of smooth bell-shaped solitary wave
solutions of eq. (1.2)

φ(η) = ±
√

c2 − ψ2(η)
a

,

ψ(η) = (a + c)(1 + cosh(2
√

c(a + c)η)),

ξ(η) = x− ct = −2
√

c(a + c)
(

η − 1
4(a + c)

ln(χ)
)

,

χ =
4c(a + c)− (a + 2c)(ψ + c)− 2

√
c(a + c)(ψ − c)(ψ − (2a + c))

−a(ψ + c)
.

(3.2)

The homoclinic orbit and profiles of bell-shaped solitary waves are shown in
figure 2.

3.2 The case c = −2a

In this case, we have algebraic equation of homoclinic orbit

y2 = φ2 − 4a + 2
√

4a2 − aφ2. (3.3)

Setting ψ2 = 4a2 − aφ2, we have y2 = 1
aψ(ψ1 − ψ), where ψ1 = 2a. By the first

equation of system (1.7), we obtain the following exact parametric representations
of smooth solitary wave solutions of eq. (1.2)

φ(η) = ±
√

4a2 − ψ2(η)
a

,

ψ(η) = −a(1 + cosh(2
√

2aη)),

ξ(η) = x− ct = −2
√

2a

(
η +

1
4a

ln

(
2a + 3ψ − 2

√
2ψ(ψ + 2a)

2a− ψ

))
. (3.4)

Pramana – J. Phys., Vol. 74, No. 1, January 2010 23



Aiyong Chen et al

–1

–0.5

0.5

1

y

–3 –2 –1 1 2 3

phi

–2

–1

1

2

phi

–8 –6 –4 –2 2 4 6 8

xi

(2-1) (2-2)

Figure 2. The homoclinic orbit (2-1) and the profile of a bell-shaped solitary
wave (2-2) for −2a < c < −a.

3.3 The case c < −2a

The hyperbola φ2−y2+2c = 0 intersects the homoclinic orbit defined by H(φ, y) =
h0 at four points Q±1 (−φ∗,±y∗) and Q±2 (φ∗,±y∗), where φ∗ = −c

√
a/a, y∗ =√

c(2a + c)/a. We have y2 = φ2 +2c+2
√

c2 − aφ2 in the interval between negative
and positive half branches of the hyperbola φ2−y2 +2c = 0. While in the left-hand
side of the negative half branch and right-hand side of the positive half branch of
the hyperbola φ2− y2 + 2c = 0, we have y2 = φ2 + 2c− 2

√
c2 − aφ2. Therefore, we

can respectively write that

y2 =
1
a
(−ψ2 + 2aψ + c2 + 2ac) =

1
a
(ψ − ψ1)(ψ2 − ψ),

y2 =
1
a
(−ψ2 − 2aψ + c2 + 2ac) = −1

a
(ψ + ψ1)(ψ2 + ψ), (3.5)

where ψ1 = −c, ψ2 = 2a + c. We next define a value η∗ by satisfying

φ(η∗) =

√
c2 − ψ2(η)

a
= −c

√
a

a
= φ∗. (3.6)

It is easy to see that for η ∈ (−∞,−η∗) and η ∈ (η∗,+∞), we have the same
parametric representations of solitary wave solution as eq. (3.2). For η ∈ (−η∗, η∗),
we have

ψ dψ√
(ψ + ψ1)2(ψ − ψ1)(ψ + ψ2)

= −dξ. (3.7)

Integrating (3.7), we obtain the following exact parametric representations of soli-
tary wave solutions of eq. (1.2)
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Figure 3. The homoclinic orbit (3-1) and the profile of W/M-shaped solitary
wave (3-2) for c < −2a.

φ(η) = ±
√

c2 − ψ2(η)
a

,

ψ(η) = −(a + c)− a cosh(2
√

c(a + c)η),

ξ(η) = x− ct = −2
√

c(a + c)
(

η +
1

4(a + c)
ln(χ)

)
,

χ =
4c(a + c) + (a + 2c)(ψ − c)− 2

√
c(a + c)(ψ + c)(ψ + 2a + c)

a(ψ − c)
. (3.8)

The homoclinic orbit and profiles of W/M-shaped solitary waves are shown in
figure 3.

4. Conclusion

In this paper,we have studied the dynamical behaviour and solitary wave solu-
tions of an integrable nonlinear wave equation using bifurcation theory of dynam-
ical systems. It is pointed out that the solitary waves of this equation evolve
from bell-shaped solitary waves to W/M-shaped solitary waves when wave speed
passes certain critical wave speed. Equation (1.2) naturally has a physical mean-
ing since it is derived from the two-dimensional Euler equation. It can be cast
into the Newton equation, u′2 = P (u) − P (A), of a particle with a new potential
P (u) = u2±

√
(A2 + 2c)2 + 4a(A2 − u2), where A = limξ→±∞ u. In this paper, we

successfully solve this Newton equation with W/M-shaped solitary wave solutions.
These solitary wave solutions may be applied to neuroscience for providing a math-
ematical model and explaining electrophysiological responses of visceral nociceptive
neurons and sensitization of dorsal root reflexes [10]. The mathematical results we
have obtained about the singular travelling wave equation provide a deep insight
into the nonlinear wave model and will be useful for physicists to comprehend the
dynamical behaviour of nonlinear wave models.
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