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Abstract. In this paper we investigate two-dimensional (2D) Rayleigh–Bénard convec-
tion using direct numerical simulation in Boussinesq fluids with Prandtl number P = 6.8
confined between thermally conducting plates. We show through the simulation that in a
small range of reduced Rayleigh number r (770 < r < 890) the 2D rolls move chaotically
in a direction normal to the roll axis. The lateral shift of the rolls may lead to a global flow
reversal of the convective motion. The chaotic travelling rolls are observed in simulations
with free-slip as well as no-slip boundary conditions on the velocity field. We show that
the travelling rolls and the flow reversal are due to an interplay between the real and
imaginary parts of the critical modes.
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1. Introduction

The Rayleigh–Bénard convection (RBC) [1–3] is an extensively studied system for
investigating a range of interesting phenomena like instabilities [4], pattern forma-
tion [5], chaos [6,7], spatio-temporal chaos and turbulence [8–10]. The convective
flow is characterized by two non-dimensional numbers: the Rayleigh number R and
the Prandtl number P . Two-dimensional (2D) stationary rolls [2] appear as primary
instability in Boussinesq fluids confined between thermally conducting boundaries
when the Rayleigh number R is raised just above a critical value Rc. The con-
vective dynamics at higher values of R depends on Prandtl number. Interesting
convective dynamics are observed when the Rayleigh number is increased beyond
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Rc [4,11–14]. Busse [12] found travelling waves along the axis of the cylindrical
rolls as secondary instability in low Prandtl number fluids that makes the con-
vection three-dimensional (3D). Travelling waves are also found in rotating RBC
in cylindrical geometry [15]. Another kind of travelling wave is known to occur
in two-dimensional (2D) RBC in binary mixtures [16,17], where the straight rolls
move in a direction perpendicular to the roll axis. Such behaviour is not reported
in two-dimensional RBC in pure fluids, although many interesting features have
been investigated (e.g., [18–20]).

In this paper we present results of two-dimensional numerical simulation of the
RBC in a pure Boussinesq fluid of Prandtl number P = 6.8. A number of di-
rect numerical simulations have been performed on 2D Rayleigh–Bénard convec-
tion [19–21]. Most of these work focus on evolution of energy, Nusselt number
scaling, and flow patterns. Some of the numerical work also describe flow struc-
tures. However, detailed study of large-scale modes is still lacking, which is the
main motivation for the present paper. We have used free-slip as well as no-slip
boundary conditions on the velocity field at the horizontal plates. In the hori-
zontal direction, we have assumed periodic boundary conditions on all the fields.
We report our results as a function of reduced Rayleigh number r = R/Rc. For
free-slip boundaries, at r ≈ 130 we observe a transition from one oscillatory state
with only real or imaginary values of critical modes W101 (corresponding to the
vertical velocity component w) and θ101 (corresponding to temperature θ) to an-
other oscillatory state where both the real and imaginary parts are nonzero. Later,
when 770 < r < 890 we find chaotic travelling waves in a direction normal to the
roll-axis. The sudden lateral shift in the roll system leads to either jitters in the
convective flow or flow reversal of the convective motion. The chaotic travelling
waves are also observed in the direct numerical simulation (DNS) of the RBC with
no-slip boundaries. We find links between the chaotic travelling waves or rolls and
the flow reversal.

2. Hydrodynamic system

We consider 2D convection in an extended layer of Boussinesq fluid with thermal
expansion coefficient α, kinematic viscosity ν, thermal diffusivity κ that is enclosed
between two flat conducting plates separated by distance d and heated from below.
The adverse temperature gradient is ∆T/d, where ∆T is the temperature difference
imposed across the bounding plates. The non-dimensional equations are

∂v
∂t

+ (v · ∇)v = −∇σ + RPθẑ + P∇2v, (1)

∂θ

∂t
+ (v · ∇)θ = w +∇2θ. (2)

Here the Rayleigh number R = αg(∆T )d3/νκ is the ratio of the buoyancy and
the dissipative forces, while the Prandtl number P = ν/κ is the ratio of thermal
diffusive time τth = d2/κ and the viscous diffusive time τvis = d2/ν. The temper-
ature perturbation θ due to the convective flow vanishes at thermally conducting
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Figure 1. (a) Time series of <(W101), =(W101), <(θ101), =(θ101) at reduced
Rayleigh number r = 700 and Prandtl number P = 6.8. The time series has
two leading frequencies, and it shows quasiperiodic behaviour. (b) The projec-
tion of the phase space in <(W101)−<(θ101) that elucidates the quasiperiodic
behaviour of the system.

boundaries. The realistic no-slip boundary conditions imply that the velocity field
v = (u, 0, w) = 0 at the boundaries. The idealized free-slip boundaries imply
∂zu = w = 0 at the flat plates. The value of Rc is 27π4/4 ≈ 657.5 for free-slip
boundaries and Rc ≈ 1707.8 for no-slip boundaries.

We have carried out our simulations of the RBC in 2D using pseudo-spectral
method [18] with stress-free boundaries. We use Fourier basis functions for rep-
resentation along the x-direction, and sin or cos functions along the vertical z-
direction. For example, the component of the velocity field in the z-direction is
represented by

w(x, z, t) =
∑
m,n

Wm0n(t)eimkcx sin(nπz), (3)

where kc = π/
√

2. Here the three subscripts of W denote the wavenumber indices
of the Fourier modes along x-, y- and z-directions. In our simulation, the second
subscript is always zero. The grid resolution used for the simulations with the
free-slip boundaries is 256 × 256 with an aspect ratio of 2

√
2 : 1. The reduced

Rayleigh number r = R/Rc is varied from 1.01 to 103. We have employed fourth-
order Runge–Kutta (RK4) scheme for time stepping with the time step varying
from 1× 10−4 to 1× 10−6 in thermal diffusive time units. The code was validated
using the results reported by Thual [18].

To solve no-slip convective flow, we employed two-step finite-difference procedure
with the Adam–Bashforth–Crank–Nicolson scheme. The first step involves pressure
calculation using Poisson’s equation, and the second step deals with time-advancing
using fourth-order central explicit scheme [22] with enhanced spectral resolution.
We computed the no-slip flow for r = 830 and P = 6.8 and compared the results
with that obtained with free-slip simulation.
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Figure 2. Time series of the real and imaginary parts of the critical velocity
mode W101 (a) and the temperature mode θ101 (b) for r = 830. The origin
on dimensionless time axis is suitably chosen after the steady state has been
reached. The time series of the modes shows jitters (small fluctuations) and
flips. The fluctuations in the temperature mode is stronger than that in the
velocity mode.

3. Results

First we report the results of 2D simulation with free-slip boundary conditions.
We observe long time behaviour of the critical 2D modes W101 and θ101. We start
our simulation with real Fourier modes. For reduced Rayleigh number r ≤ 80, the
system shows time-independent steady convection. For 80 < r < 130, we observe
simple oscillations in all the modes. Here all the Fourier modes remain real. Similar
observations have been made previously by others [18–20]. As r is raised further,
the critical Fourier modes (W101 and θ101) become complex. For 130 < r < 145,
the imaginary parts of W101 and θ101 become nonzero and they oscillate around a
zero mean, while the real parts oscillate around a nonzero mean.

For 145 < r < 770 the imaginary parts of the complex modes also oscillate
around a finite mean. This is an oscillatory instability, which makes the critical
modes complex. The real and imaginary parts of a Fourier mode interact with each
other through nonlinear interaction with higher-order modes. When the simulation
is started with purely imaginary modes (except θ00n, which is always real due to
the reality condition), then the roles of real and imaginary parts of all complex
modes get interchanged.

The oscillations of both real and imaginary parts become strongly anharmonic for
660 < r < 770. This leads to temporally quasiperiodic flow. Figure 1a illustrates
the real and the imaginary parts of the critical mode W101 and θ101. These modes
show two leading frequencies. The projection of phase space on W101 − θ101 shows
quasiperiodic flow as seen in figure 1b. Similar behaviour has been observed in
experiments on RBC by Swinney and Gollub [6].

The convection becomes chaotic for 770 < r < 890. Figure 2 displays the real
and the imaginary parts of the critical modes W101 and θ101 for r = 830. The
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Figure 3. Projection of the phase space in the <(W101)–<(θ101) plane at
r = 830. The figure illustrates the chaotic behaviour of the system.

Figure 4. Power spectral density plot for the time signal of <(W101) obtained
from DNS of 2D RBC at r = 830 and P = 6.8.

projection of the phase space on <(W101)–<(θ101) plane is illustrated in figure 3
that indicates the chaotic nature of the system. The power spectral density (PSD)
plot of the time signal of <(W101) is shown in figure 4. The PSD shows a broad
spectrum characteristic of a chaotic attractor.

In the chaotic regime, the real and imaginary parts of the critical modes interact
strongly through nonlinear coupling with higher-order Fourier modes. As illustrated
in figure 2, the Fourier modes show jitters (small fluctuations) as well as change
in sign. The velocity mode W101 and temperature mode θ101 appear to be in
approximate phase with each other. However, the fluctuations in the temperature
mode near the jitter or the flip is stronger than the corresponding fluctuations in
the velocity mode. The interval between two flips is of the order of one thermal
diffusion time-scale, while the duration of the flips is much shorter.
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Figure 5. Travelling rolls in two-dimensional Rayleigh–Bénard convection
at r = 830. The top panel of the figures is for the simulation with free-slip
boundaries and the bottom panel is for the no-slip boundaries. The temper-
ature field is represented in colour with blue being the coldest region. The
arrows represent the velocity field. The three images at the top panel show
the field configurations at three time. At t = 1.2514 the central region has
hot fluid that shifts leftward subsequently. At t = 1.35 the whole roll pattern
is shifted approximately by half a wavelength. Similar features are seen for
no-slip convective flow, except that the flow pattern moves right.

The physical interpretation of the chaotic time series (figure 2) yields interesting
insights into the travelling wave instability and flow reversal. We provide a simple
argument to explain this. If the critical modes were the only modes in the system,
then the vertical velocity in real space would be <(W101 exp(ikcx) sin(nπz)). When
W101 changes from a real value A to a complex value A exp(iφ), it would lead to
a shift of the roll pattern in horizontal distance by φ/kc. This is the observed
travelling wave instability near the bifurcation. Since the temporal change in the
phase of the critical mode is chaotic, the movement of the rolls would also be
irregular. During the flip of the critical Fourier modes, φ ≈ π, which corresponds
to a horizontal shift of λ/2. Under this situation, the vertical velocity reverses
its direction at a given location that leads to global flow reversal in the system.
The simulated flow contains many modes apart from the critical modes, yet the
large-scale ones play a dominant role. Hence, the bifurcation of the large-scale
Fourier modes from real to complex plays a major role in initiating travelling wave
instability and flow reversal.

We illustrate the above dynamics using figure 5 that contains two panels of
images: the top ones are for the free-slip boundaries, while the bottom ones are for
the no-slip boundaries. The two panels of figure 5 illustrate three snap-shots of the
velocity and temperature at three different instances of time. The top panel (free-
slip) illustrates the flow fields at t = 1.2514, t = 1.28 and t = 1.35 respectively for
a different run. The temperature fields are shown in colour coding with blue being
the coldest region, while the velocity fields are shown using arrows. At t = 1.2514,
the hot fluid is rising near the centre. The roll pattern moves leftward as time
advances. At time t = 1.35, a cold fluid parcel is falling down near the centre.
Thus the top panel illustrates the travelling roll in RB convection under free-slip
boundary condition. In the bottom panel, similar feature is observed for no-slip
boundary condition, however, for a shorter time. Here the rolls have moved only

80 Pramana – J. Phys., Vol. 74, No. 1, January 2010



Chaotic travelling rolls

a smaller fraction of a wavelength. Note that the rolls are travelling perpendicular
to the roll axis along the periodic direction in both the results, and the interval
between two consecutive flow reversal is of the order of one diffusive time unit
(refer to figure 2).

Figure 5 also depicts flow reversal phenomenon. If we place a probe near the
centre of the system, we would observe the fluid to be hot and moving upward at
initial time. At the end, the above-mentioned probe would measure colder fluid
flowing downward. Thus a flow reversal due to travelling rolls is clearly illustrated.

We have created two movies to illustrate the travelling rolls and flow reversal
by taking many frames between the reversal. These movies can be seen in our
website [23,24]. The first movie [23] depicts the travelling rolls near a flow reversal
regime. By the end of the movie (in approximately 0.1 thermal diffusive time
unit), the roll has shifted approximately by half a wavelength. Similar features
are observed in the second movie [24] that depicts the convective flow with no-slip
boundaries; here the roll pattern moves to the right.

We have performed several three-dimensional (3D) simulations for Prandtl num-
ber 6.8, and a range of Rayleigh number in the chaotic and turbulent regime. We
observe the above features of travelling rolls and flow reversal in 3D as well; these
results will be reported in due course.

Reversal of large-scale flows has been observed in many experiments and nu-
merical simulations [25–29]. Some of the experiments have been performed for
large Rayleigh numbers (of the order of 109 to 1012). The physics of the above
phenomenon has been of great interest in the recent past. Our results are for two-
dimensional RBC at moderately low Rayleigh numbers. Yet, the simple mechanism
of travelling rolls in the periodic direction and its consequence to the phenomenon
of flow reversal may be of interest in more complex situations. The large Rayleigh
number regimes are under investigation.

4. Conclusion

To summarize, we observe succession of patterns in two-dimensional RBC under
free-slip boundaries. Our focus has been on the chaotic travelling rolls observed
in the range of 770 < r < 890. We show that the generation of traveling rolls is
due to the bifurcation of critical modes from real values to complex values. This
kind of travelling roll is possible along the periodic direction that may be realized
in practice along the azimuthal direction in a cylindrical container. It is interesting
to note that several travelling roll states and flow reversals have been observed in
cylindrical geometry. Also, the chaotic travelling rolls lead to flow reversal when
the amplitude of the critical Fourier modes switches sign.
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