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Abstract. In this paper, we study the synchronization behaviour of two linearly cou-
pled parametrically excited chaotic pendula. The stability of the synchronized state is
examined using Lyapunov stability theory and linear matrix inequality (LMI); and some
sufficient criteria for global asymptotic synchronization are derived from which an esti-
mated critical coupling is determined. Numerical solutions are presented to verify the
theoretical analysis. We also examined the transition to stable synchronous state and
show that this corresponds to a boundary crisis of the chaotic attractor.
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1. Introduction

At the beginning of the last decade, one of the discoveries that changed the view-
points of the field of nonlinear dynamics and chaos is the fact that two or more
chaotic systems evolving from different initial conditions can be synchronized. This
was achieved by Pecora and Carroll [1]. Synchronization can be understood as a
state in which two or more systems (with dynamics that can either be periodic or
chaotic) adjust to each other giving rise to a common dynamical behaviour. This
common behaviour can be induced either by coupling the systems (locally or glob-
ally) or by forcing them [2]. In view of its practical applications, the phenomenon
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of synchronization has been widely investigated theoretically [3,4], numerically (see
ref. [5] and the references therein) and experimentally [6] for many sytems; thus
many types of synchronization have been proposed. For a detailed study of differ-
ent concepts of synchronization, the reader is referred to the fundamental book by
Pikovsky et al [7]

Coupled dynamical systems are typically synthesized from simpler, low-
dimensional systems to form new and more complex organizations. This is often
done with the intent of realistically modelling spatially extended systems, with the
belief that dominant features of the constituent systems will be retained. From an
application point of view this building block approach can also be used to create a
novel system whose behaviour is more complex than that of its constituents. These
and several other motivations have led to intensive studies of coupled systems in a
wide range of disciplines including optical systems [8,9], condensed matter [10,11],
biological systems [12-14], neural networks [15-17] and physical systems [18,19] to
mention only a few.

The phenomena of synchronized dynamics in coupled or driven nonlinear oscilla-
tors are of fundamental importance and possess wide practical applications ranging
from secure communications to the monitoring of the dynamical systems and control
[20,21]. The basic idea in secure communication is to mask the information-bearing
signal to be transmitted with a chaotic signal that exhibits broadband features.
This represents an alternative to mere classical noise-masking methods, wherein
one uses a purely stochastic signal to mask the information to be transmitted.

Among the many interesting phenomena associated with synchronization in cou-
pled or driven nonlinear oscillators that have been extensively studied are, inter-
mittency [6,22], boundary crisis [23,24], interior crisis [25,26] and basin bifurcations
leading to multistability [27]. For instance, in ref. [23], we examined unidirectionally
coupled double-well Duffing oscillators (DDOs) and showed that synchronization
was characterized by boundary crisis of the chaotic attractors. In our previous
work [23,25], only numerical results were presented. In this paper, we extend our
results to parametrically excited systems and in particular obtain sufficient crite-
ria for global synchronization using Lyapunov stability theory and linear matrix
inequality (LMI); from which we also show that an estimate critical coupling for
complete synchronization to occur could be obtained. Oscillators with parametric
modulations are common in real experimental practice and they have been widely
used in electromechanical and electronic systems for communication purposes. For
this reason, investigation of the synchronization behaviour of parametrically excited
oscillators is relevant for a variety of applications. Till now, only a few works have
been devoted to the study of synchronization of parametrically modulated systems
[28-31].

The rest of this paper is organized as follows: In the following section, we give
a brief description of the model and the master—slave synchronization scheme for
non-autonomous parametrically excited pendulum. In §3, some sufficient criteria
for global chaos synchronization are provided based on Lyapunov’s direct method
and LMI while §4 is devoted to the numerical simulations and in §5 we present the
dynamical mechanism leading to complete synchronization in our model. Finally,
a concluding remark is given in §6.
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2. The model and synchronization scheme

Let us consider the following parametrically excited chaotic pendulum [32,33]:
&+ b+ (14 ncoswt)sinz =0, (1)

where z is the displacement from the stable equilibrium position, overdots represent
differentiation with respect to time ¢, b stands for the damping coefficient, w and 7
represent the angular frequency and the amplitude of the parametric excitation of
the system respectively.

A comparative study of the dynamics of this oscillator has been presented by
Szemplinska and Tyrkiel [32]. They showed that tumbling chaotic motion consist-
ing of an irregular combination of rotations and oscillations in this class of oscil-
lators is preceded by two co-existing periodic attractors, which are simultaneously
annihilated prior to period-doubling cascade scenario. Pendulum with parametric
modulation are of practical importance in view of their applications in electrochem-
ical and electronic systems for communication purposes.

When two such systems (1) interact with each other via a specific coupling
scheme, the dynamics could be very rich and exciting. One such dynamical be-
haviour is the synchronization. In order to design the synchronization scheme, the
oscillator (1) can be re-written in the autonomous form using the transformations
r1 = x,r9 = & as follows:

&1 =x9, 4o = —bry— (1+ncoswt)sinz. (2)
In a compact form, we express eq. (2) as
X = ZX + of(x), (3)

where

X = (z1,72)7 € R?, a(t) =1+ ncoswt,

z=(0 1) 0=( )

Next we construct drive-response synchronization scheme for two identical para-
metrically excited pendula by linear state error feedback controller in the following
form:

X = ZX + af (x), (4)

Y = ZY + of(y) + 1, (5)
where Y = (y1,y2)7 € R? is the state variables of the response system, u = C(X —
Y) is the linear state feedback control input and C € R?*? is a constant control
matrix that determines the strength of the feedback into the response system.

In order to ascertain the error dynamics, we define the synchronization error as
the difference between the relevant dynamical variable and it is given by

e=X-Y. (6)
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By subtracting eq. (5) from eq. (4) and applying the definition of error system in
eq. (6), one readily obtains

é=(Z-C+A(x1,y))e, (7)
where
0 0 €11 C12
A = d C=
(@1,30) = o ( 9(z1,y1) 0) o ( Co1 C22 )
with
(sinzy — sinyy)
a1, yp) = — ot 2RI 8
g(z1,91) 1 — 1y (8)

In the absence of control matrix, C, eq. (7) would have an equilibrium at (0, 0).
Obviously, e = 0 is an equilibrium point of the error system (7).

For the error dynamics system (7), synchronization in a direct sense implies that
the trajectories z(t) and y(t) of the drive and response systems, for any choice of
the initial conditions z(0) and y(0) satisfy

Jim [Jef] = Jim [|x(t) ~ y(£)]| =0, (9)

where || * || represents the Euclidean norm of a vector.

3. Sufficient criteria for global synchronization

In this section, we shall employ the Lyapunov stability theory and linear matrix
inequality (LMI) to obtain the main theorem of this paper and establish some
criteria for global chaos synchronization in the sense of the error system (7). The
Lyapunov stability theory employs Lyapunov functionals which could be used for
the analysis and synthesis of synchronization dynamics; and has been employed by
earlier authors (see for example refs [34,35]). However, attention has been paid
mostly on the stability of the synchronization. Here, we also show that the method
could be used to estimate the onset of synchronization. The basic idea is that a
given system is stable, if there exist a continuous positive definite differentiable
function (the Lyapunov function, V') defined along the system’s trajectory, such
that its time derivative V < 0, as t — oo [34-36]. To begin with, we shall apply
the following lemma to prove the main theorem of this paper.

Lemma 1. For g(x1,y1) defined by (8), the inequality

lg(z1,91)[ <1 (10)

holds.

Proof. By the differential mean-value theorem we have

sinzy; —siny; = (r1 —y1)cosg, @€ (z1,41) or @€ (y1,71). (11)
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So,

(sinzq — sinyy)

= —cos¢ (12)
L1 — Y1

g(w1,91) = —
and hence the inequality (10) holds.
We proceed by utilizing the stability theory on time-varied systems to derive

sufficient criteria for global chaos synchronization in the sense of the error system
(7). The following theorem is related to the general control matrix:

C = < C11 C12 ) c R2X2. (13)

C21 C22

P12 P22
and a coupling matriz C € R**? defined in (13) such that for any t > 0

Theorem 1. If there exists a symmetric positive definite matrix P = <p11 P12 )

O = —pricn — pizcar + pi2|(1+ n]) <0, (14)
Qo =pi2(1 — c12) — paa(ca2 +b) <0, (15)

401Q9 > [|p11(1 — c12) — pr2(c11 + ca2 +b) — pascar| + paa(l + |77D]27
(16)

then the drive-response systems (4) and (5) achieve global chaos synchronization.
Proof. Let us assume a quadratic Lyapunov function of the form:

V(e) = e’ Pe, (17)
where P is a positive definite symmetric matrix as defined earlier. The derivative
of the Lyapunov function with respect to time, ¢, along the trajectory of the error
system (7) is of the form

V(e) = e"Pe +e'Pe. (18)
Substituting eq. (7) into the system (18), we have

Vie)=e [(Z(t)+ A(t) — C)"P + P(Z(t) + A(t) - C)] e (19)
Vie) <0 if

v = [(Z(t) +A(t)-C)'P+P(Z(t) + A(t) — C)] <0Vvt>0. (20)
According to Lyapunov stability theory [36], the inequality in (20) represents a

sufficient condition for global asymptotic stability of the linear time-varied error
system (7) at the equilibrium point. With A(t),C,P,Z(t) as defined earlier, eq.
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(20) thus becomes

A1 Az
— 21
. ( e ) , (21)
where A1; = —2p11c11 + 2p12(ag — c21), A2 = puri(l — c12) — pra(cir + c22 +0) +

poa(ag — co1) and Aag = 2p12(1 — ¢12) — 2pa2a2(cee + b). Since «y is symmetric, 7y is
negative if and only if

—2p1ici1 + 2p1a(ag —c21) <0 (22)
2p12(1 — c12) — 2poa(ca2 +b) <0 (23)

4[(ag — c21)p12 — c11p11)[(1 — c12)p12 — p22(ca2 + b)]
—[p11(1 — c12) — p12(c11 + c22 + b) + paz(cg — C21)]2 > 0. (24)

The trajectories of the parametrically excited pendulum describable by the model
in eq. (1) is bounded. Thus for any ¢t > 0

la(t)| = |1 +ncoswt| < 1+ |n|. (25)
Since the matrix P is positive definite, we have pas > 0. It follows that

—2p11c11 + 2pia(ag — e21) < —2pricin — 2p1zear + [2p12(ag)| < 20,
[p11(1 — c12) — pra(enn + caz + b) + paz(ag — c21)| < [p11(1 — c12)
—piz2(c11 + 22 +b) — pazcar| + paa(1 + [n])). (26)
The inequalities in (22)—(24) hold if the inequalities in (14)—(16) are satisfied.
Hence, it is evident that with the appropriate choice of the control matrix, C,
the drive-response systems (4) and (5) achieve global chaos synchronization. Thus,

V vanishes identically only at the origin. Lyapunov theorem implies that e — 0 as
t — 00.

COROLLARY 1

If a control matriz C = diag{c1,ca} and a symmetric positive definite matriz P =

(pn p12 ) > 0 are selected such that

P12 D22
1
o > [p12|(L + [n]) (27)
P11
—b
ey > P12 — Op22 (28)
P22
4[(L + [n])|p12| = c1p11][p12 — p2a(c2 + b)]
—[Ip11 — praler + ez +b)| + paa(1+ [n]))° > 0 (29)

then the drive-response systems (4) and (5) achieve global chaos synchronization.
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Proof. The inequalities (27)—(29) can be obtained from the inequalities (14)—(16)
with C11 = C1,C22 = C2 and C12 = C91 = 0.

COROLLARY 2

If a control matriz C = diag{c,c} and a symmetric positive definite matric P =

P1LP12) 5 0 gre selected such that
P12 P22

1 —b
¢> max (|p12|( + |77\)7 D12 P22> (30)
P11 P22
4(p11p22 — Pia)c® — 4c [2paa|pr2| (1 + |n]) + p11(p12 — bpaz)
+|p12(p11 — bp12)|] + 4[p12| (P12 — bp22) (1 + |n])
—[Ip11 = bpia| + p2 (1 + [n)))* > 0, (31)

then the drive-response systems (4) and (5) achieve global chaos synchronization.

Proof. Letting ¢11 = ¢,c22 = ¢ and ¢12 = ¢2; = 0, the inequalities (30) and (31)
can be obtained according to the partial synchronization criteria (27)—(29).

Remark. If we take p1o = 0 and p11 = p22(1 + |n|) > 0, then the following synchro-
nization criterion can be obtained by means of the inequalities (30) and (31)

\/b2+4(1+|n|)—b. (32)

2

C = diag{c,c}, c¢>

4. Numerical simulation

Here, we employ numerical approach to validate the above theoretical analysis. The
results to be presented in this section were computed with the following parameter
settings: n = 1.1, b = 0.1 and w = 1.65. We set the initial conditions for the
drive system (4) as z1(0) = 0.1,22(0) = 0.2 and the initial conditions for the
response system (6) as y1(0) = 0.4, y2(0) = 0.8. One could readily observe that the
uncoupled parametrically excited pendulum exhibits persistent tumbling chaos as
depicted by the chaotic attractor shown in figure 1; which corresponds to what was
reported in refs [32,33].

Numerical solutions were obtained using fourth-order Runge-Kutta routine in
double precision as well as the software Dynamics [37]. Firstly, in figure 2, we show
the time evolution of the average error, e,y = \/e% + e% for the case C = diag{0,0}
which corresponds to the uncoupled system. Note that the error dynamics reveal
irregular bursts that are comparable to the size of the chaotic attractor.

Next, we examine the variation of e,, as the coupling strength is progressively
increased. Figure 3 shows that as the coupling strength ¢ increases, and full syn-
chronization is approached, F,, — 0 asymptotically. It is clear from figure 3 that
full synchrony is achieved at the critical ¢ = ¢, ~ 1.38. Then for all ¢ > c.,
E.ve = 0 and remains stable as ¢t — oo, implying that the oscillators are completely
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dx/dt
o
T

Figure 1. Tumbling chaotic attractor in the z—y (y = &) plane in the para-
metrically excited pendulum with the following parameters: b = 0.1, n = 1.1,
w = 1.65.
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Figure 2. Time dependence of error dynamics eave, for b = 0.1, n = 1.1
and w = 1.65, for the uncoupled (i.e. C = diag{0,0}) parametrically excited
pendulum.

synchronized. Remarkably, the numerical value of ¢ = ¢, is comparable to what
was obtained using the synchronization criterion in eq. (32). By direct calculation
of eq. (32), we find that for the control matrix C' = diag{c, ¢}, ¢ > ¢y = 1.4. Thus,
our prediction is in good agreement with the numerical results.

Finally, we depict the simulation results for the second case in which we choose the
constant control matrix, C = diag{c, ¢}, such that ¢ = 1.45 > ¢, thus satisfying
the condition (32). The simulation results shown in figure 4 confirm that complete
synchronization is achieved for ¢ = 1.45 > c,.

5. Transition to synchronization

The structural changes associated with the transition to stable synchronous behav-
iour is examined in this section. To illustrate this, we consider the strange attractor
exhibited by the drive parametrically excited pendulum as shown in figure 1. When
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Figure 3. Average error dynamics eave as a function of the coupling strength,
c. Here the parameters of the system are as in figure 1.
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Figure 4. Chaos synchronization of two nonautonomous parametrically ex-
cited pendula by the controller C = diag{1.45,1.45}.

the coupled oscillators become synchronized, the attractor for the response system
would be precisely superimposed, point-to-point with that of the drive attractor.
In the desynchronous regime, the Poincaré points move on the attractor in an
uncorrelated manner.

To understand the structural changes that took place in the system, we ob-
tain the Poincaré section of the phase portraits within and somewhere outside the
synchronization region for the response system. By discarding the first 2000 iter-
ates as a means of accounting for the initial transients, we display in figure 5 the
Poincaré sections for the response system (5) for two different values of the coupling
strength prior to ¢.,. The Poincaré sections were obtained by confining the dynam-
ics in x(t) between —7m and 7 using the software Dynamics [36]. This technique
was employed to sample the phase portraits of the trajectory x = x(t),& = &(t)
in modulo(27/w). With this approach we reduce the three-dimensional state space
(x,,t) of each oscillator to two-dimensional phase plane (z, &) with discrete time:
z=xz(nT),z=2(nT),n=0,1,2,....

For ¢ = 0, the tumbling chaotic attractor of the response system is idenitical
to that of the drive depicted in figure 1. When the coupling is switched on, the
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Figure 5. Poincaré sections for the response system of the parametrically
excited pendulum for different values of the coupling strength. The velocity,
I, is plotted against the displacement, . Other parameters of the system are
as in figure 1: (a) ¢ = 0.15; (b) ¢ = 0.28.

Poincaré points move on the attractor in an uncorrelated fashion, gradually occupy-
ing the entire phase space. This is shown in figure 5a (for ¢ = 0.15). With ¢ = 0.28,
prior to ¢, the tumbling chaotic attractor is weakly registered initially, and then
superposed by uncorrelated Poincaré points due to desynchronous points. We find
that in the synchronization process, (i) the boundaries of the chaotic attractor
is destroyed and (ii) the distance between it and the basin boundary approaches
zero, so that the Poincaré points spread on the entire phase space. This is a more
complex dynamics; and the phenomenon called boundary or exterior crisis of the
chaotic attractor has been reported earlier as synchronization transition [23,31].
The concept of boundary or exterior crisis is characterized by the collision of the
attractor by unstable periodic orbit on its basin boundary, or more equivalently, its
stable manifold [38].

As the synchronous regime is however approached, the attractor of the response
system is gradually re-built and in the full synchronous state, we find that the
attractor of the response system is then registered point-for-point with the strange
attractor of the drive shown in figure 1, and thus, the two strange attractors behave
as one entity — indicating identical synchronization.

6. Conclusions

Conclusively, we have examined the synchronization behaviour of a drive-response
system consisting of two coupled pendula with parametric excitation and estab-
lished sufficient criteria for global and asymptotic chaos synchronization. By ex-
amining the stability of the synchronized state based on Lyapunov theory and linear
matrix inequality (LMI), we obtained an estimate critical coupling for synchroniza-
tion to occur in the drive-response parametrically excited pendula. The criteria
obtained are in algebraic form and could be easily employed for designing the feed-
back control gains that would guarantee full synchronization. We present numerical
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simulations to verify these results. Prior to the obtained critical coupling, we also
identify the boundary crisis event in which the main body of the chaotic attractor
is destroyed and the Poincaré points filling the phase space.
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