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Complexification of three potential models — 11
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Abstract. A new kind of P7 and non-P7-symmetric complex potentials are con-
structed from a group theoretical viewpoint of the sl(2,C') potential algebras. The real
eigenvalues and the corresponding regular eigenfunctions are also obtained. The results
are compared with the ones obtained before.
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1. Introduction

PT-symmetric quantum mechanics have generated much interest in recent years
[1-10]. Few years ago, Bender and others [1,2,4,9] have looked at several complex
potentials with P7 symmetry and have shown that the energy eigenvalues are real
when P7 symmetry is unbroken, whereas they come in complex conjugate pairs
when P7T symmetry is spontaneously broken. Recently, Mostafazadeh [10] in his
very noteworthy work has introduced the concept of pseudo-Hermiticity and he has
pointed out that all the P7-symmetric Hamiltonians regarded so far are actually
P-pseudo-Hermitian, namely PHP~! = HT. Again, it is claimed that generally, it
is the n-pseudo-Hermiticity, i.e. nHn~' = H' [10] and not the P7 symmetry, of a
Hamiltonian which is the necessary condition for its real spectrum.

Bagchi and Quesne [11,12] have discussed the Lie algebra for hyperbolic potential.
In this paper, we shall illustrate the Lie algebra for the deformed-type hyperbolic
Scarf-IT potential [13], Poschl-Teller potential [13] and the Morse potential [14].
We shall show that our results are in good agreement with the results obtained by
others.

The paper is organized as follows. In §2, we present a brief discussion of the
sl(2,C) potential algebra and its realization. In §3, we obtain general results for
complex potential associated with the sl(2,C') potential algebra. In §4, 5, 6 we
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discuss the solutions of the Scarf-II, the Péschl-Teller and the Morse potentials
respectively. Section 7 gives conclusion.

2. sl(2,C) potential algebras

The most general differential realization of the sl(2, C) algebra is [11,12]

.0 tip |, O L0 1
= —i— —et? |t 4 (i—F= 1

h=ig de=e sl (e @ ee@]. W
where 0 < ¢ < 27, € R and the two functions f(z), g(z) € C satisfy

df > dg

A - = _ 2

iz o= (2)
and the generators are connected by

[Jo, J+] = £Jx, [J4,J-] = =2Jp. (3)

The Casimir operator corresponding to the above generators is
J?=—Jyd=+ I3 F Jo. (4)
Using (1) and (4) one can obtain

O (02 1>df Ly 0dg 5 1

=52 @ Yepar 9 1 )

2 1

In the realization (1), the states are given by [11]

eimd)
im) = Vi (x,0) = Vipm—— 6
|j > J ( ¢) % \/ﬂ ()
with fixed j for which
Joljm) = m|jm), m=j,j+1,.. (7)
Jgm) = j(G = Dlgm), m=7j,j+1,.. (8)

and j = j1 +ij2, m = my +ima, m1 = j1 +n, mg = jo, where ji,j2,m1,m2 € R,
n € N. The states with j = m (i.e., n = 0) satisfy the equation J_|jj) = 0, while
those with higher values of n can be obtained from them by repeated applications
of J4 and using the relation Jy|jm)oc|jm + 1). Using eq. (8) it follows that the
functions ¢, (x) satisfies the Schrodinger equation

2
=Y+ V™ = — B, (9)

1 2
/(/);'Im + Vm'l/]jm = - (.7 - ) 1/ij7
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where ¢, (z) = flm)(a:). The family of potentials V;,(x) is represented by

1 d d
Vin(x) = ( - m2> é + 2m£ +g° (10)

and the energy eigenvalues are given by

2
1
Em™ = — (m1 +img —n — 2) . (11)

Solving the differential equation J,z/)om) (x) = 0, the eigenfunctions ’(/)(()m) (x) are
easily obtained. The remaining eigenfunctions are obtained by successive applica-

tion of J4 on w(()m) (z). For bound states ( ,({n)(j:oo) — 0), n is restricted to the
1

range n = 0,1,2, ..., nmax <My — 3.

3. General results

The solutions of eq. (2) are

{ flx) :tanhq('xfcfia) | }7 12)

g(x) = (dq +idg) sechy(z — ¢ — io)

{ fz) = cothq(.x —c—io) | } | (13)
g(x) = (dq + idy) cosechy(xz — ¢ — i0)

f) =X
{ 9(@) = (dr + idy)e } | .

where ¢(>0), c,d1,d2(#0) are real, A = £1,—F < o < 7, and the deformed hyper-
bolic functions are defined as
T _ —x T —x h
sinh, z = %, coshg x = ¢ +2qe , tanh,z = 2:;}122

and we use the relations:

q sechi T+ tanhi =1, cothg r—q Cosechi =1,
(tanh, x)' = gsech)z, (cosech, x)’ = —cosech, z coth, =,
(cothyz) = —¢q cosechi z,

where the prime denotes the differentiation with respect to x. From egs (10) and
(12) we have the nonsingular Scarf-IT [SF] potential, given by
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VSF(z) = <(d1 +idy)? + (i — (m1 + im2)2> q) sech?(z — ¢ — io)

—2(mq +img)(d1 + ida) sechq(xz — ¢ — i0) tanhy(z — ¢ — i0)
2

(coshyz (22 — 2¢) + g cos 20) ?

1
X { (d% —d2+ ( —m? + m%) q) (coshyz (22 — 2¢) cos 20 + q)

4
—2(dyda — gmima) sinhg2 (22 — 2¢) sin 20
—2(dymy — damy)[sinh2(z — ¢) cos o
X (coshg2 (2x — 2¢) — g cos 20 + 2q)]
+2(dymg + damy)[coshz (z — ¢) sino
X (coshg2 (22 — 2¢) — qcos 20 — 2q)]}
27
+ 2
(coshgz (22 — 2¢) + g cos 20)
1
x{ (d% —d2+ (4 —m3 + m%) q) sinhg2 (22 — 2¢) sin 20
+2(d1dy — gmima) (coshyz (22 — 2¢) cos 20 + q)
—2(dymy — damg)[coshyz(x — ¢)sino
X (coshy2 (22 — 2¢) — g cos 20 — 2q))]
—2(dyma + damy)[sinh2 (z — ¢) cos o
)

X (coshyz2 (22 — 2¢) — g cos 20 + 2q)] } (15)

From eqgs (10) and (13) we have the nonsingular Péschl-Teller potential (PTL),

given by
1
VEPTL(2) = ((d1 +idg)? — (4 —(my + im2)2> q> cosechi(x —c—1i0)
—2(mq + ime)(d1 + ida) cosechy(x — ¢ — io) cothy(x — ¢ — i0)
2

(coshyz (22 — 2¢) — g cos 20)2

1
x{ (45 i (4 _m§+m3) q)
x (coshyz (22 — 2¢) cos 20 — q)
—2(d1dy + gmimg) sinhg2 (22 — 2¢) sin 20
—2(dymy — damg)[coshgz (z — ¢) coso
X (coshyz2 (22 — 2¢) + g cos 20 — 2q)]

+2(dima + damy)[sinh2 (z — ¢)sino
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X (coshyz2 (22 — 2¢) + g cos 20 + Zq)]}
2
+ 2
(coshyz (22 — 2¢) — g cos20)

1
x{ <d% —d3— (4 —m2 4 m%) q> sinhg2 (22 — 2¢) sin 20
+2(d1da + gmims) (coshq2 (22 — 2¢) cos 20 — q)
—2(dimy — damg)[sinhg(x — ¢)sino
X (coshg2 (22 — 2¢) + g cos 20 + 2q)]
—2(dyma + damq)[coshgz (z — ¢) coso

)

X (coshg2 (22 — 2¢) + gcos 20 — 2q)]} (16)
and from egs (10) and (14) we have the nonsingular Morse potential (MP), given
by

VMP () = (dy + idy)?e™ % — 2(my 4 ima)(dy + ido)e™®

= (d? — dg) e_2$ - 2(d1m1 — d2m2)e_$

+2i(dydoe™® — (dymg + domy )e ™), (17)

where eq. (17) corresponds to A = 1 and to obtain egs (15) and (16) we use the
relations:

sinh, (x + iy) = sinh, x cosy + i coshy x siny (18)

coshy(z + iy) = coshy & cosy + isinhy x sin y. (19)

The above potentials give a quite complete generalization of sl(2, C') algebra cor-
responding to the representation (1). In order to obtain the regular wave function

1/)(()7”) (z), solve the differential equation J_,., (2, ¢) = 0, we have
(m) N (m—1) |:(d1 + ZdQ) < 1 . />:|
x) « (sech, = 2/exp | ————=arctan | — sinh, 2z’ ||, (20

w(m)( ) inh ! (—m+%+%)
o (T)o< [sinh g 5

2 (—m+%—%)
X {cosh\/g (2)] , (21)
. 1 s g
[() )(x) X exp [— (m — 2) ' — (dy +idy)e™™ |, (22)

where @’ = © — ¢ — io,m = my + ims. Equations (20) and (21) are regular when
my > %, dy > 0 and eq. (22) is regular when d; > 0.
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4. Complexification of the Scarf-IT potential

The most general form of Scarf-II potential is
Viz)=-W sechg x —iVasechy xtanh, z, V4 >0, Vo #0. (23)

The potential (23) is P7-symmetric under P: ¢ — logqg—x, 7: i — —i and -
pseudo-Hermitian under nzn~—! = x + ir. Now for ¢ = o = 0, comparing eq. (23)
with eq. (15) we have

1
df_d§+<4_mz+mg)q:_vl (24)
d1d2 —gmimsy = 0 (25)
d1m1 - d2m2 =0 (26)
2(d1m2 + d2m1) = ‘/2 (27)

Solving eqs (26) and (27) we have
‘/2d2 ‘/le

= ———— = —=——. 2
"I Ng B ™A d) .
Using eqs (24), (25) and (28) we have
V2 q
2 2 1 AP [ — = 2
Vs
didy |1 — ———==| =0.
1= g = o

Equation (30) implies that either d; = 0 or di # 0 and d} + d3 = 3./q|Va|. We
shall now discuss two cases:

Case 1. d; = 0. From eqgs (28) and (29) we have

2
1
d§—4<\/vl+i+\/§Vg+)\\/V1+Z—\/§V2), A=+l (31)

provided |V3| < ﬁ (Vi + %) and

V2
2d,’

mi =

From the regularity condition m; > 1 of eq. (20), it then follows that dy must
have the same sign as V5, which we denote by 7. In this case, the solutions of

dldea my, Mg are
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1
ai=0. d=gn (Vi S valval - Vi D - vamal ) )

1 q q -
(34)
where |V2|§ﬁ(Vl+%),,u::|:1,)\+p:Oand
<\/V1+Z+\/6|V2|+u\/vl+i—\/§|%|>>\/a. (35)

So, from egs (11) and (34) we get two series of real energy eigenvalues

En=—<2\1/§ <\/V1+Z+\/§V2|

2
i\/%JrZ—\/&IVz) —n—;)
n=01,2,..< (1< i+ L4 qv
2. /7 \V 4
q 1
i,/vl+4—\/cjv2>—2>. (36)

Let us take the potential parameter as Vi = (B? — A(A + /q), Vo =
—% (244 \/q) ,ma = 0, the potential (23) is invariant under the transformation

V4 A 1 B :
A+ 57 < B. Two values of m are 7 + 5 and 7 and two series of real energy
eigenvalues are

L (A+4 A 2 A
BV +2)):—(—n>  n=0,1,2,3,.. <~ (37)
V4 V4
2 B 1\? B 1
Eﬁﬁ)z—(—n—> , n:0,1,2,3,...<<—>. (38)
Vi 2 Va2
Now for the special choice B = /g, A + @ = —\/q (A < 0), the energies (37)
obtained from the first sl(2, C) algebra become ESN = A+n+ %)2, while the

second sl(2, C) algebra leads to a single energy level E(gl) = —i.

Case I dy # 0 and d? + d3 = 5.,/q|Va|. Applying regularity condition we must
have

1 1
d1=2n\/¢av2|—vl—j, d2=2n\/\/§|V2|+V1+Z, (39)
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_ ! a L -4
= ey VaNa Vi L = ol v - 4o

where we assume |Va| > % (Vi+4) and (\/q|Va| + Vi + %) > ¢. In this case,

complex energy values are given by

(L a : a_ S
E, = (QW(\/V1+4+\/§|V212\/V1+4 \/a|vg> n 2)

1 q
=0,1,2,... < — \% i+ -=. 41
n 5 Ly &y <2\/a\/\/a| 2|+ 1+4 ( )

2

5. Complexification of the P6schl-Teller potential

The generalized Poschl-Teller potential is usually given in the form
V(z)=W cosechi (x — c—io)
— Vi cosechy(x — ¢ —io) cothy(x — ¢ — i0),

Vi > —%, Va # 0. (42)

The potential (42) is P7-symmetric under P: x — logq — x + 2¢, 7: i — —i. Now
for ¢ = o = 0, comparing eq. (42) with eq. (16) we have

1
&g (- mtemd)g=vi (43)
dids + gqmims =0 (44)
2(d1m1 — dgmz) = ‘/2 (45)
d1m2 + d2m1 =0. (46)

Using the same technique as in the previous section, we have for
Casel (dy =0)

1
dy =0, d2—277(\/‘/1+Z+\/§|V2|—M\/V1+Z—\/§|V2|>, (47)

m1:(\/vl+j+\/a|v2|+u\/m+j—¢a|w>, my =0,

(48)
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where |V2|§ﬁ(V1+%),,u:i1,)\+u=0and

(YL vamar s+ E - vanl) > va (49)

The two series of real energy eigenvalues are

2
_ 1 q q !
E, = (Qﬁ(\/m+4+ﬁl%i\/Vl+4 \/§|V2|> n 2)

_ 1 q q 1
n—0,1,2,...<<2ﬂ(\/v1+4+\/§VQi\/V1+4 \/EJVQ> 2)
(50)
and for
Case Il (di # 0 and d? + d3 = 1,/q|Va])
1 q 1 q
d1:§77 \/5\‘/'2|—V1—17 d2:§77 \/§|V2|+V1+Z, (51)

1 q 1 q
= —_ = — —_— —_—— 2
m 2\/6\/‘/§|V2|+V1+4’ ma 2\@#\/\/@‘@ -7 (52)

where we assume |Va| > % (Vi+ %) and (/q|Va| + Vi + %) > ¢q. In this case,

complex energy values are given by

2
1 q . q 1
E,=—|— = + z_ —n—=
n (2\/5 <\/V1+4+\/§V2| z\/V1+4 \/(}Vg|) n 2)

1 q
=0,1,2,... < —— =.
n 03 PR=P) < Qﬂ\/\/zl|v2|+vl+4

(53)
6. Complexification of the Morse potential
The generalized Morse potential is usually given by
V() = (Vi +iVh)e ™ — (V3 +iVy)e ™™, Vi, Vo, V5, V4 € R. (54)

The potential (54) is non-P7-symmetric under P: z — —x,7: i — —i.

For Vi +iVa = (A+iB)%, V3 +iVy = K(A+iB) (A,B,K € R), potential is

pseudo-Hermitian under the transformation nan~! = z + if with 6 = Qtan_l(%).

Comparing egs (54) with (17) we have
di —d3 =W, (55)
2d1ds = Vs (56)
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2(d1m1 — dgmz) = VEJ, (57)

2(d1m2 + dgml) =V, (58)

Equations (55)—(58) have already been discussed in [11]. The complex eigenvalues
[11] are

1

E,=———

2212 +V5)

< VVE+HVE + Vi —ip \/V12+V22_V1>
) 2
x(Vs+iVa) =n—3| (59)
where

n=0,1,2 ..

1
R P O Y RV Al Ve Vs
[2 2<V12+V22)<3 rrE
1
+uVy \/V12+V22+V1>—n—2

The real energies correspond to mo = 0

2
Vs 1
E, = — \VAVE+VE-Vi—n—< |, 60
(ﬂlvzl e 2) o
V3 1
n=01,2,..< JVEAVE-Vi—n— =,
VA VYT T T

7. Conclusion

where

In this paper, the bound state eigenvalues of the Scarf-II, the Péschl-Teller and the
Morse potentials have been derived by sl(2, C') potential algebra. Our solution of eq.
(2) which are given in eqs (12), (13) are more general than the solutions obtained
by others [12]. For ¢ = 1,m2 = 0,m; = m, egs (15) and (16) coincide with [12]
and eq. (36) is consistent with [4] for o = 1. For the case of the Scarf-II and the
Poschl-Teller potentials, we have calculated that symmetry breaking occurs when
Vo] > ﬁ (Vi + 4). We have also shown that for the Morse potential there is no

symmetry breaking range.
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