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Abstract. In this paper we present a spatially homogeneous locally-rotationally-
symmetric (LRS) Bianchi type-V cosmological model with perfect fluid and heat flow. A
general approach is introduced to solve Einstein’s field equations using a law of variation
for the mean Hubble parameter, which is related to average scale factor of the model that
yields a constant value for the deceleration parameter. Exact solutions that correspond
to singular and non-singular models are found with heat flow. The physical constraints
on the solution and, in particular, the thermodynamical laws that govern such solutions
are discussed in some detail.

Keywords. Cosmology; Bianchi models; inflationary phase; Hubble parameter; deceler-
ation parameter.

PACS Nos 04.20.Jb; 04.20.-q; 98.80.Cq; 04.50+h

1. Model and field equations

We consider a locally-rotationally-symmetric (LRS) Bianchi type-V space-time with
metric

ds® = —dt® + A*(t)da® + e** B*(t) (dy® + dz?), (1)

where A(t) and B(t) are the cosmic scale functions.
The energy—momentum tensor of a perfect fluid with heat conduction has the
form [1]:

Ty = (p+p) UpUy + PGpr + Quitw + Quuy, (2)

where p is the thermodynamic pressure, p is the energy density, u, is the four-
velocity of the fluid and @, is the heat flow vector satisfying Q" > 0 and
Quut = 0. The generalized mean Hubble parameter H is given by
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where a = (ABQ) 13 is the average scale factor. The dot denotes a derivative with
respect to cosmic time ¢.

In a co-moving coordinate system u* = &5 and Q" = §/'Q', the existing compo-
nents of the Einstein’s field equations, in the system of units 87G = ¢ = 1, and in
view of eq. (2), for the Bianchi type-V space-time (1), explicitly give the following
set of equations:
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From eqgs (4) and (6), we obtain the Raychaudhuri equation [2]:

: 1 1
9:—§92—202—§(p+3p). (8)

Finally, the law of energy conservation equation T%" = 0 gives

o (5425 ) =G ©

2. Solution of field equations

In order to solve completely, we need one extra relation among the variables. As
were observed earlier by Berman [3] and Berman and Gomide [4], the constant
deceleration parameter models yield laws for the scale factor that stand adequately
for our present view of the different phases of the Universe. So we shall consider
here the case in LRS Bianchi type-V perfect fluid model with heat conduction.
Recently, Singh [5] has extended the work to LRS Bianchi type-V cosmological
models and obtained solutions of the field equations in general relativity.
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According to the law, the variation for the mean Hubble parameter is given by
H =la"" = 1(AB?*)~"/3, (10)
where [(> 0) and n(> 0) are constants, and
n=gq+1, (11)
where H is defined as in eq. (3) and g, the deceleration parameter, is defined as

Using egs (10) and (11), the solution of eq. (12) gives the law of variation of the
average scale factor of the form

a= (nlt)l/n (13)
for n # 0 and
a = cexp(lt) (14)

for n = 0, where c¢ is the constant of integration. Here, in eq. (13), we have
assumed that for ¢ = 0 the value a = 0 so that the constant of integration turns out
to be zero.
Now, from eqgs (4) and (5), we get
B i B AB

B A B 4B % (15)

Integrating eq. (15) and using a = (ABQ)l/S, the quadrature form of the metric
functions A and B are given by

A(t) = (dy)"2 aexp (—251 / a‘3dt) , (16)

B(t) = (dy)"/? aexp(lg/aBdt> , (17)

where k; and d; are the constants of integration.

2.1 Solutions with n # 0

In this case, using eq. (13) into egs (16) and (17), the solution of the metric functions
is given by

2k

It (n—=3)/n
3in —3) ")

A(t) = (dy) %3 (nit)"/" exp | — : (18)
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B(t) = (d1)"? (nit)™ exp (nit) =3/ || (19)

R
3l(n—3)
where n # 3. The solution for heat flow is given by

Q1 = 2k; (nlt) /™, (20)

The energy density and pressure are, respectively, given by
— k2 —6/n c —2/n
p=3(nt)"%— 5 (nlt) 6/m _ 3 (dy)*? (nit) =%

xexp[?)l(iki?)) (m@“*”"} , (21)

p=(2n—3)(nt)"> - %% (i) " + (dy)*® (i) /"

4k,

(n=3)/n
m(nlt) 3 ] (22)

X exp {

We find that the above solutions satisfy the Raychaudhuri equation (8) and
conservation equation (9) identically. We find that 6 oc (nt)™', A, x (nit)?n=6/n
and 02 o (nit)=%". From the above set of solutions we observe that the spatial
volume is zero at ¢ = 0. The metric functions A(t) and B(t) are also zero at this
initial epoch. The energy density and pressure become infinite at ¢ = 0. The
physical parameters 6, A, and o2 are all infinite at this initial point. The model
has a point singularity at ¢ = 0. The heat conduction is a decreasing function of
time and is maximum at the initial epoch. As t — oo, both the scale factors A(t)
and B(t) tend to infinity whereas p and p tend to zero. The physical parameters
such as 0, A, and o? tend to zero as t — oo, which indicates that the Universe is
expanding with cosmic time but the rate of expansion is decreasing and the model
becomes isotropic at large times. The heat flow diminishes as t — oco. Also, we
find that lim; .,.0/6% = 0 for n < 3 and limy_...p/#? =const., which indicate that
the models approach isotropy for large t. The flow of heat conduction along the
z-direction was maximum early on, and it diminishes as ¢ — co. We also observe
that 02 = @Q2%/12, which implies that the shear scalar is directly proportional to
heat conduction throughout the evolution.

2.2 Solutions with n =0

In this case, using eq. (14) in eqs (16) and (17), the solution for the scale factors is
given by

A(t) = (d1) /3 cexp [Zt + ;lzgexp(?,m] : (23)
B(t) = (d)"? cexp {lt - 3% exp(—3lt)} . (24)
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The solution for heat conduction is given by

2k
The energy density and pressure are respectively given by

1k2
p =31 — - % exp(—6lt)

3 b
—3(d)"? ¢ 2 exp|—2 lt+—gﬁ5exp(*3ﬁ) ; (26)
3lc?
1k2
p=—31° - gc—é exp(—6lt)
2k
+ (d1)4/3 2 exp [_2 {lt + STC; eXp(—Slf)}} . (27)

The above solutions identically satisfy the Raychaudhuri equation (8) and con-
servation equation (9), respectively. We find that 8§ = 3[, A, x exp(—6lt) and
02 oc exp(—6lt). Thus all the geometrical and physical parameters such as A(t),
B(t), p, p, 0, A, 0% and the heat flow are constant at ¢ = 0. Thus, the Universe
starts evolving with constant physical and geometrical parameters. The rate of
expansion is uniform throughout the evolution. As t — oo, A(t) and B(t) tend to

infinity whereas p and p are related by the equation of state p = —p.

3. Thermodynamical relations
3.1 Baryon conservation law

In standard cosmology, conservation of total particle number gives
NY =0, (28)

where N* = yu* is the particle flux and x is the particle number density, which is
given by

dx

= = —x#. 29

at - X (29)
For the power-law solutions, the particle number density is

X = b (nit) =", (30)

and for the exponential solutions (n = 0), we get

by
X = 5 exp(~3lt), (31)

where by and by are constants of integration. Using eqs (20) and (25), egs (30) and
(31) yield x x Q1. We observe that the particle number density is large at ¢t = 0
in the case of n # 0, and so the heat conduction has a greater influence during the
early stages of evolution. When n = 0, the particle density is constant at ¢ = 0,
which implies that heat conduction is constant.
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3.2 Temperature gradient law

The usual expression for heat conduction [6] is
Q* = —k(g" + utu”) (T, + Tuy,qu®), (32)

where k > 0 is the heat conduction coefficient, i.e., thermal conductivity, T is the
temperature and u,.,u® is the acceleration. Since in our case only the z-component
of heat flux is retained, from the above equation we obtain Q1 = xT;.

The temperature distribution for n # 0 and n = 0 respectively are given in the
forms:

ky (nlt)=3/"

=0

k1 exp(—3lt
= o2 ), (34)
where 7, (t) and 72(t) appear as integration functions, which may be either an
arbitrary function of time or constants. We observe that T diverges at the initial
epoch as long as the coefficient of thermal conductivity remains finite. At the final
stage of expansion ¢ — oo, we have T — 7;(t) when n # 0 and T — 72(¢t) when
n = 0, which implies that the Universe will be in thermal equilibrium at the final
stage of evolution.
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