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1. Introduction

Spectral singularities, though impossible for Hermitian Hamiltonians, are rather
typical for non-Hermitian Hamiltonians with a continuous part of spectrum. Par-
ticular role pertaining to the spectral singularities was discovered for the first time
by Naimark in [1]. The term ‘spectral singularity’ itself was introduced later by
Schwartz in [2] where the spectral singularities of a certain class of abstract linear
operators were studied. Detailed investigation of differential operators with spec-
tral singularities was done by Pavlov [3,4] and Lyantse [5]. Spectral singularities for
some class of abstract operators were introduced also by Krein and Langer [6,7].
A general notion of the sets of spectral singularities for closed (bounded or un-
bounded) linear operators on a Banach space was given by Nagy in [8] and further
investigated in [9–11]. We shall not bring in this paper the definition of spectral
singularities for general operators given in [8] because of its technical difficulty, re-
ferring the interested reader to the original paper [8]. Note only that Nagy shows,
in addition, in [8] that the set of spectral singularities defined according to his gen-
eral definition coincides in the case of differential operators with the set of spectral
singularities as defined by Lyantse in [5].

An extensive account of non-Hermitian (non-self-adjoint) problems of mathemat-
ical physics considered in the literature till 1960 is given by Dolph in [12]. For the
past ten years, non-Hermitian Hamiltonians and complex extension of quantum
mechanics have received a lot of attention (see review papers [13,14]). Recently
there appeared several papers (see [15–18]) where spectral singularities are iden-
tified for some concrete complex scattering potentials and where some physical
interpretations for the spectral singularities are offered.
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On the other hand, it turns out that (as A Mostafazadeh complained to the
author) it is not easy to find in the literature a precise and explicit definition
of the spectral singularity. Our intent in the present paper is to try to give an
elementary introduction to this specific subject. We describe a definition of the
spectral singularity for some class of abstract operators given by Schwartz [2] and
a definition widely used for differential operators (whose resolvents are integral
operators). We illustrate the definitions by presenting several known examples of
operators with spectral singularities.

2. Some preliminaries

Since the concept of spectral singularities is connected to the concepts of spectrum
and resolvent of an operator, we start with these concepts.

Let H be a Hilbert space with an inner product 〈·|·〉 and A: D(A) ⊂ H → H a
linear operator (unbounded, in general) with the domain D(A) dense in H. The
concept of spectrum of A is related to the equation

Aψ − λψ = f, (1)

where f ∈ H is given, ψ ∈ D(A) is a desired solution and λ is a given complex
number. There are three main problems concerning this equation: uniqueness of
the solution, existence of the solution, and continuous dependence of the solution
on the right-hand side element (stability property of the solution). The following
definition of regular points reflects these three properties of the solution.

A complex number λ ∈ C is called a regular point of the operator A if the
following three conditions are satisfied:

(i) ker(A−λI) = {0} so that there exists the inverse operator (A−λI)−1 defined
on ran(A − λI), where I is the identity operator, ker(A − λI) is the kernel
of A − λI consisting of all elements ψ ∈ D(A) such that (A − λI)ψ = 0 and
ran(A− λI) denotes the range of A− λI consisting of all elements (A− λI)ψ
for ψ ∈ D(A).

(ii) The inverse operator (A − λI)−1 is bounded on ran(A − λI), i.e. there is a
finite positive constant C such that

||(A− λI)−1f || ≤ C||f || for all f ∈ ran(A− λI)

(iii) ran(A− λI) is dense in H.

The condition (iii) means that eq. (1) is solvable for ‘almost all’ right-hand sides
f. The condition (i) means that solution of eq. (1) is unique. Finally, the condition
(ii) means that the solution of eq. (1) depends continuously on the right-hand side
f.

The set of all regular points of the operator A is called the resolvent set of A and
is denoted by ρ(A). The operator (A− λI)−1 defined for regular points λ is called
the resolvent of A and is denoted by Rλ(A) or briefly Rλ. It follows by (iii) and
(ii) that Rλ is uniquely extended as a linear and bounded operator to the whole
space H.
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The set

σ(A) = C � ρA,

the complement of ρ(A) in the complex plane C, is called the spectrum of the
operator A. So a point λ in C belongs to the spectrum of A if and only if at least
one of the above conditions (i), (ii) and (iii) fails to hold.

The spectrum σ(A) of the operator A can be splitted into three mutually disjont
subsets σp(A), σc(A) and σr(A) as follows:

The set σp(A) consists of all eigenvalues of A and is called the point spectrum of
A:

σp(A) = {λ ∈ C : ker(A− λI) 6= {0}}.
The set σc(A) consists of all λ ∈ C for which the operator A−λI has the inverse

with the domain dense in H (i.e. ker(A−λI) = {0} and ran(A−λI) is dense in H),
but the inverse operator (A−λI)−1 is unbounded. This set is called the continuous
spectrum of A.

Finally, the set σr(A), which is called the remainder (or residual) spectrum of
A, consists of all λ ∈ C for which A− λI has the (bounded or unbounded) inverse
(i.e. ker(A−λI) = {0}) whose domain however is not dense in H (i.e. ran(A−λI)
is not dense in H). Note that for self-adjoint operators the remainder spectrum is
always empty.

Now we are going to formulate the famous spectral theorem for self-adjoint op-
erators.

The adjoint operator A†: D(A†) ⊂ H → H is defined as follows:

D(A†) = {g ∈ H : ∃g† ∈ H, 〈g|Af〉 =
〈
g†|f〉

, ∀f ∈ D(A)}.
Since D(A) is dense in H, for each g ∈ D(A†) the corresponding element g† ∈ H is
unique. We put

A†g = g† for g ∈ D(A†).

Thus,

〈g|Af〉 = 〈A†g|f〉 for all f ∈ D(A) and g ∈ D(A†).

The operator A is called self-adjoint (Hermitian) if A = A†. Otherwise A is called
non-self-adjoint (non-Hermitian).

An operator A with the domain D(A) dense in H is called symmetric if

〈g|Af〉 = 〈Ag|f〉 for all f, g ∈ D(A).

For any symmetric operator A we have A ⊂ A†, that is, D(A) ⊂ D(A†) and
Af = A†f for f ∈ D(A). In general, a symmetric operator need not be self-adjoint.

Next, remember that a linear bounded operator P : H → H defined on the whole
space H is called a projection, if P = P 2. If in addition P = P †, then P is called
an orthogonal projection.

Let A: D(A) ⊂ H → H be a self-adjoint operator with the domain D(A) dense
in H. Then the spectrum of A is real and the well-known spectral theorem for self-
adjoint operators states that for the operator A there is a unique family (spectral
family) of orthogonal projection operators Eλ, −∞ < λ < ∞, having the properties:
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(1) Eλ is non-decreasing: Eλ ≤ Eµ for λ < µ, that is,

〈Eλψ|ψ〉 ≤ 〈Eµψ|ψ〉 for λ < µ and all ψ ∈ H.

(2) Eλ is continuous from the left in the strong limit sense, that is,

lim
ε→0+

‖Eλ−εψ − Eλψ‖ = 0 for all ψ ∈ H.

(3) E−∞ = 0, E∞ = I, that is,

lim
λ→−∞

‖Eλψ‖ = 0 and lim
λ→∞

‖Eλψ − ψ‖ = 0 for all ψ ∈ H.

(4) The element ψ belongs to D(A) if and only if
∫ ∞

−∞
λ2d 〈ψ|Eλψ〉 < ∞.

For these elements ψ,

Aψ =
∫ ∞

−∞
λdEλψ and ‖Aψ‖2 =

∫ ∞

−∞
λ2d 〈ψ|Eλψ〉 .

The operator function Eλ is called the spectral function of A (or the resolution
of the identity for A).

The point λ0 ∈ (−∞,∞) is called a point of constancy of Eλ if there exists an
ε > 0 such that

Eλ0+ε − Eλ0−ε = 0,

and a point of growth otherwise. Furthemore, the point λ0 is called a jump point
if

Eλ+
0
− Eλ0 6= 0.

Continuity points which are also points of growth are called points of continuous
growth.

If Eλ is the spectral function of a self-adjoint operator A, then

(a) A real number λ0 is a regular point of A if and only if λ0 is a point of constancy
of Eλ.

(b) A real number λ0 is an eigenvalue of A if and only if λ0 is a jump point of
Eλ.

From the propositions (a) and (b) it follows that each point of the continuous
growth of spectral function of a self-adjoint operator belongs to its continuous
spectrum.

We shall use the following notation: Let ∆ be one of the intervals

(α, β), [α, β), (α, β], [α, β];
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then E∆ denotes the operators

Eβ − Eα+ , Eβ − Eα, Eβ+ − Eα+ , Eβ+ − Eα,

respectively. Note that E∆ is also an orthogonal projection operator.
The use of self-adjoint operators in quantum mechanics is realized as follows. Let

S be a quantum-mechanical system (an object consisting of very small particles).
In quantum mechanics every state of the system S is described by a certain element
ψ of the Hilbert space H. Every physical quantity (observable) is described by a
particular self-adjoint operator on the space H. If, for instance, a certain physical
quantity a is described by means of an operator A (note that if a denotes the energy
of the system, then the corresponding operator A is called the Hamiltonian of the
system), the physical interpretations of this circumstance are the following:

(i) Suppose that the system S is in a certain state ψ and ψ ∈ D(A); then 〈ψ|Aψ〉
is the mathematical expectation for the quantity a in this state.

(ii) If Eλ denotes the spectral family for the operator A, then 〈ψ|E∆ψ〉 is the
probability that in the state ψ the value of the quantity a lies in the interval
∆. In other words, 〈ψ|Eλψ〉 is the distribution function for the quantity a in
this state.

The spectral theorem

〈ψ|Aψ〉 =
∫ ∞

−∞
λd 〈ψ|Eλψ〉 (2)

may be interpreted here as the familiar integral representation of the mathematical
expectation by means of a distribution function. It follows from this that only the
points at which the spectral family Eλ increases, i.e. the points of the spectrum of
A, enter into the picture as possible values for the quantity a.

If, in particular, ψ0 ∈ D(A), ‖ψ0‖ = 1, is an eigenvector of the operator A and
corresponds to the eigenvalue λ0 (Aψ0 = λ0ψ0), then

〈ψ0|Eλψ0〉 =
{

0 for λ ≤ λ0,
1 for λ > λ0.

Therefore, in the state ψ0 the quantity a takes the value λ0 with probability equal
to 1, i.e. in state ψ0 the quantity a certainly is equal to λ0.

If the spectrum of the operator A is discrete, if ψ1, ψ2, . . . form a complete or-
thonormal system of its eigenvectors, and if λ1, λ2, . . . are the corresponding eigen-
values, then the possible values of the quantity a form a discrete system λ1, λ2, . . ..
The quantity a takes each of these values with certainty only in the corresponding
states ψ1, ψ2, . . .. In any other state, the distribution function for the quantity a
can be given. If ψ is an arbitrary state of the system, it can be expressed as an
expansion in terms of the orthonormal system:

ψ =
∞∑

n=1

cnψn, cn = 〈ψn|ψ〉,

and here (2) takes the form
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〈ψ|Aψ〉 =
∞∑

n=1

λn|cn|2.

Hence |cn|2 is the probability that in the state ψ the quantity a is equal to λn. (It
has been assumed here that λn is a simple eigenvalue of the operator A; but if λn

is a multiple eigenvalue, then the required probability is equal to the sum of all the
|ck|2 for which the corresponding λk are equal to λn.)

We see that finding the spectral family E∆ of a given self-adjoint operator A
turns out to be an important mathematical problem. Known proofs of the spectral
theorem, which imply the existence of the spectral family Eλ for the operator A,
tell very little about the structure of Eλ (because this structure strongly depends
on the concrete operator A). In practice, one often uses the following formula for
the spectral family of general self-adjoint operators. If Rλ = (A − λI)−1 is the
resolvent of the self-adjoint operator A, then

E∆ = lim
ε→0+

1
2πi

∫

∆

(Rλ+iε −Rλ−iε)dλ, (3)

where the limit is taken in the strong limit sense.
As a rule, for differential operators the resolvent is an integral operator and hence

according to (3) their spectral projectors turn out to be integral operators whose
kernels are expressed in terms of special solutions of the corresponding differential
equation.

3. Spectral singularities for a class of abstract operators

We have seen in the previous section that the concept of spectral family of a self-
adjoint operator is very important for quantum-mechanical applications. Therefore,
in the theory of non-self-adjoint operators it was natural to try to define a gener-
alization of the spectral family, even if, it was for some classes of non-self-adjoint
operators. It turns out that the possibility of existence of spectral singularities is
a serious obstacle for constructing a reasonable spectral family for non-self-adjoint
operators.

In the Schwartz’s paper [2] the following definition of spectral singularities is
used.

DEFINITION 1

Let A: D(A) ⊂ H → H be a non-self-adjoint operator such that its spectrum σ(A)
consists of an interval J of the real axis and a finite number of complex numbers
outside J . Let J0 be a finite subset of J . Assume that for any finite subinterval ∆
of J , whose closure do not contain any point of the set J0, the limit operator

E∆ = lim
ε→0+

1
2πi

∫

∆

(Rλ+iε −Rλ−iε)dλ (4)
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exists in the strong limit sense, so that E∆ is a linear bounded operator on H.
Denote by d the distance from the interval ∆ to the set J0. If

‖E(∆)‖ → ∞ as d → 0,

then any point of the set J0 is called a spectral singularity of the operator A.
Note that for self-adjoint operators ‖E(∆)‖ ≤ 1 for all intervals ∆ of the real

axis so that self-adjoint operators have no spectral singularities.

Example 2. Consider in the Hilbert space L2(−1, 1) the linear bounded operator A
defined by

Af(x) = xf(x) + cx

∫ 1

−1

f(t)dt, f ∈ L2(−1, 1), (5)

where c is a complex number.

The adjoint A† of the operator A is

A†f(x) = xf(x) + c∗x
∫ 1

−1

f(t)dt, f ∈ L2(−1, 1),

where c∗ denotes the complex conjugate of the number c. Therefore, the operator
A is self-adjoint if and only if the number c is real.

It can be verified directly that the resolvent Rλ = (A− λI)−1 of A has the form

Rλf(x) =
f(x)
x− λ

− cx

ω(λ)(x− λ)

∫ 1

−1

f(t)
t− λ

dt, f ∈ L2(−1, 1),

where

ω(λ) = 1 + c

∫ 1

−1

t

t− λ
dt. (6)

The spectrum σ(A) of the operator A coincides with the real axis interval [−1, 1]. If
c 6= − 1

2 , then σ(A) is purely continuous. But if c = − 1
2 , then λ = 0 is an eigenvalue

of A with the corresponding eigenfunction f(x) ≡ 1 and the union [−1, 0) ∪ (0, 1]
forms the continuous spectrum of A. If

λ0 ∈ (−1, 1) and ω(λ0) = 0,

then λ0 is a spectral singularity of the operator A (see [2] for details). Using (6)
we can see that any λ0 ∈ (−1, 1) is a spectral singularity of A if we take

c = −
(

2 + λ0 log
1− λ0

1 + λ0
± πiλ0

)−1

in Definition (5) of A. In the case c = − 1
2 , the eigenvalue λ = 0 is a spectral

singularity of A.

Example 3. In the same paper [2], Schwartz considered also the following example
A of linear unbounded operators:
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D(A) = {f ∈ L2(0,∞) : f ′′ ∈ L2(0,∞), f(0) = hf ′(0)},

Af = −f ′′(x), f ∈ D(A),

where h is a complex number.

The adjoint A† of the operator A is given by

D(A†) = {f ∈ L2(0,∞) : f ′′ ∈ L2(0,∞), f(0) = h∗f ′(0)},

A†f = −f ′′(x), f ∈ D(A†),

where h∗ is the complex conjugate of the number h. It follows that the operator A
is self-adjoint if and only if the number h is real.

Consider the equation

−y′′(x) = λy(x), 0 < x < ∞, (7)

with λ = k2, Im k ≥ 0. Denote by ϕ(x, λ) the solution of eq. (7) satisfying the
initial conditions

ϕ(0, λ) = h, ϕ′(0, λ) = 1,

that is,

ϕ(x, λ) =
sin kx

k
+ h cos kx.

Note that the solution ϕ(x, λ) is chosen so that it satisfies the boundary condition
f(0) = hf ′(0). All numbers λ of the form λ = k2, Im k > 0, 1− hik 6= 0 belong to
the resolvent set of the operator A. The resolvent Rλ = (L − λI)−1 is an integral
operator of the form

Rλf(x) =
∫ ∞

0

R(x, ξ, λ)f(ξ)dξ

with the kernel

R(x, ξ, λ) =
1

1− hik

{
ϕ(x, λ)eikξ for 0 ≤ x ≤ ξ < ∞,
ϕ(ξ, λ)eikx for 0 ≤ ξ ≤ x < ∞.

If Re h > 0 and h = 0, then the spectrum σ(A) of the operator A is purely con-
tinuous and coincides with the real axis interval [0,∞). Further, if Re h < 0, then
the spectrum of A consists of the continuous part coincided with the real interval
[0,∞) and a single eigenvalue λ0 = (ih)−2 = −h−2 with the corresponding eigen-
function y0(x) = ex/h. Finally, if Reh = 0 and Im h 6= 0, then the spectrum of
A is purely continuous and coincides with the interval [0,∞), but in this case the
number λ0 = (ih)−2 = −h−2 comes to lie in the continuous spectrum [0,∞) and it
is a spectral singularity of A in the sense of Definition 1 (see [2] for the details).

In the next section we describe a definition of the spectral singularities for dif-
ferential operators, frequently used in the literature.
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4. Spectral singularities of differential operators

Let (a, b) be a finite or infinite interval of the real axis R and p0, p1, . . . , pn: (a, b) →
C be complex-valued functions. Consider the differential expression

l(y) = p0(x)y(n) + p1(x)y(n−1) + · · ·+ pn(x)y, a < x < b, (8)

and assume that the functions 1/p0(x), p1(x), . . . , pn(x) are integrable on any finite
subinterval of the interval (a, b). In the case when the interval (a, b) has one or two
finite end points we take some linear homogeneous boundary conditions at the finite
end points of the interval (a, b). Let us present such needed boundary conditions
in the form

U(y) = 0. (9)

With the differential expression (8) and the boundary condition (9) we asso-
ciate an operator A acting in the Hilbert space L2(a, b) as follows. The domain of
definition D(A) of the operator A consists of all functions y ∈ L2(a, b) such that:

(1) y has a derivative y(n−1) absolutely continuous on every finite subinterval of
the interval (a, b) (hence the derivative y(n) exists almost everywhere) and
l(y) ∈ L2(a, b).

(2) U(y) = 0 (in the case of finite end points of the interval (a, b)).

If y ∈ D(A), then we set

Ay = l(y).

Since we do not assume that p0(x), p1(x), . . . , pn(x) are real-valued, the operator A
is, in general, non-self-adjoint.

It is known [19] that for λ ∈ ρ(A) the resolvent Rλ = (A − λI)−1 is an integral
operator of the form

Rλf(x) =
∫ b

a

R(x, ξ, λ)f(ξ)dξ, (10)

where R(x, ξ, λ) is a kernel function which is an analytic (holomorphic) function of
the variable λ ∈ ρ(A). Note that if λ0 is an isolated eigenvalue of A (that is, λ0

is an eigenvalue of A and it is an isolated point in σ(A)), then λ0 is a pole of the
kernel function R(x, ξ, λ) with respect to λ so that

R(x, ξ, λ) →∞ as λ ∈ ρ(A) and λ → λ0. (11)

However, (11) may be held also for some points λ0 ∈ σ(A) that are not isolated
eigenvalues of A. We call such a point λ0 ∈ σ(A) as a spectral singularity of the
operator A. Thus we can introduce the following definition.
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DEFINITION 4

We call a point λ0 ∈ σ(A) as a spectral singularity of the operator A, if it is not an
isolated eigenvalue of A, but (11) holds.

Note that such a definition is enough in applications as the resolvent of almost all
differential operators (including partial differential operators) is an integral operator
of type (10). Since the resolvent kernel is unbounded in any small neighbourhood
of the spectral singularity, often spectral singularity is interpreted as a certain
‘pole’ of the resolvent kernel as a function of λ and one says that the spectral
singularities are those poles of the resolvent kernel which are not isolated eigenvalues
of the operator. If the interval (a, b) is finite, then the spectrum of the operator A
consists only of isolated eigenvalues and therefore in this case there are no spectral
singularities. As usual, spectral singularities of differential operators are embedded
in the continuous spectrum of the operator. Note also that in order to determine
the spectral singularities of a given operator by using the above definition one needs
to construct the resolvent kernel of the operator.

It can be seen using formulas (4), (10), and the reasonings of Schwartz’s paper
[2] that if for a differential operator A both Definitions 1 and 4 are applicable, then
these definitions are equivalent.

5. Operators on the semi-axis

Example 5 (see [19], Appendix II). Consider the operator A generated in the Hilbert
space L2(0,∞) by the differential expression

l(y) = −y′′ + p(x)y, 0 < x < ∞, (12)

with the boundary condition

y(0) = 0. (13)

Under the condition
∫ ∞

0

(1 + x) |p(x)| dx < ∞,

the equation

−y′′ + p(x)y = λy, 0 < x < ∞, (14)

with λ = k2 (Im k ≥ 0), has a solution e(x, k) (Jost solution) such that

e(x, k) = eixk[1 + o(1)] as x →∞ and Im k ≥ 0.

For every x ≥ 0, the solution e(x, k) is continuous with respect to k for Im k ≥ 0,
and is holomorphic with respect to k for Im k > 0. Denote by ϕ(x, λ) the solution
of eq. (14) satisfying the initial conditions
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ϕ(0, λ) = 0, ϕ′(0, λ) = 1.

Note that ϕ(x, λ) satisfies the boundary condition (13) and is an entire function of
λ ∈ C. Let us set

ω(λ) = Wx(ϕ, e) = ϕ(x, λ)e′(x, k)− ϕ′(x, λ)e(x, k)
= ϕ(0, λ)e′(0, k)− ϕ′(0, λ)e(0, k) = −e(0, k),

the Wronskian of the solutions ϕ(x, λ) and e(x, k), which does not depend on x.
All numbers λ of the form λ = k2, Im k > 0, e(0, k) 6= 0 belong to the resolvent

set of the operator A. The resolvent Rλ = (L−λI)−1 is an integral operator of the
form

Rλf(x) =
∫ ∞

0

R(x, ξ, λ)f(ξ)dξ

with the kernel

R(x, ξ, λ) =
R1(x, ξ, λ)

ω(λ)
,

where

R1(x, ξ, λ) = −
{

ϕ(x, λ)e(ξ, k) for 0 ≤ x ≤ ξ < ∞,
ϕ(ξ, λ)e(x, k) for 0 ≤ ξ ≤ x < ∞.

Therefore, spectral singularities of A are those points λ0 = k2
0 (Im k0 ≥ 0) for which

e(0, k0) = 0 but λ0 = k2
0 is not an isolated eigenvalue of the operator A.

For every l > 0 there is a number Cl > 0 such that

‖Rk2‖ ≥ Cl

|e(0, k)|
√

Im k

for all k in the domain Im k > 0, |k| ≤ l. This shows that the resolvent grows
in norm more faster than in the absence of spectral singularities, when λ = k2

approaches a spectral singularity.
For given f ∈ L2(0,∞) the solution ψ of the equation

−ψ′′ + p(x)ψ = λψ + f, 0 < x < ∞,

ψ(0) = 0,

is given by the formula

ψ(x) =
∫ ∞

0

R(x, ξ, λ)f(ξ)dξ = − 1
e(0, k)

∫ ∞

0

R1(x, ξ, λ)f(ξ)dξ. (15)

If λ is in the continuous spectrum of the operator A, then the integral operator

R1f(x) =
∫ ∞

0

R1(x, ξ, λ)f(ξ)dξ
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is an unbounded operator causing an instability of the solution. If at the point λ
we have, besides, a spectral singularity (e(0, k) = 0), then eq. (15) shows that we
will have a ‘resonance’ phenomenon at the spectral singularity.

An expansion formula in eigenfunctions (including ‘generalized eigenfunctions’
corresponding to the continuous spectrum) of a differential operator A, not nec-
essarily self-adjoint, is derived in practice very often by applying the technique of
contour integration as follows. Often one can establish that for any f ∈ H

Rλf = −f

λ
+ rλ,

where rλ tends to zero as |λ| → ∞ faster than λ−1. Hence

f = − 1
2πi

∫

ΓN

Rλfdλ +
1

2πi

∫

ΓN

rλdλ,

where ΓN is the circle in the complex λ-plane of radius N centred at the origin. If

lim
N→∞

∫

ΓN

rλdλ = 0,

which holds in most cases, we get

f = − lim
N→∞

1
2πi

∫

ΓN

Rλfdλ. (16)

Next the main job is to carry the integral in (16) onto the spectrum of A using the
concrete structure and analytical properties of the resolvent Rλ.

Assume that in eq. (14) the potential p(x) satisfies the condition
∫ ∞

0

eεx |p(x)| dx < ∞

for some ε > 0. Then the function e(0, k) is holomorphic in the half-plane Im k >
−ε/2 and therefore it may have only a finite number roots (zeros) in the closed
upper half-plane Im k ≥ 0. Let

e(0, kj) = 0 (Im kj > 0), j = 1, . . . , N,

and

e(0, rj) = 0 (Im rj = 0), j = 1, . . . , N ′.

The numbers λj = k2
j , j = 1, . . . , N , are eigenvalues of the operator A, and this

operator has no other eigenvalues. The real axis interval [0,∞) forms the continuous
spectrum of the operator A and the remainder spectrum of A is empty. The numbers
µj = r2

j , j = 1, . . . , N ′, are spectral singularities of the operator A. If the potential
p(x) is real-valued, then e(0, k) 6= 0 for −∞ < k < ∞ and hence a self-adjoint
operator A has no spectral singularities. The functions ϕ(x, λj) and e(x, kj), as
well as the functions ϕ(x, rj) and e(x, rj), are linearly dependent. Let mj denote
the multiplicity of the root kj of the equation e(0, k) = 0. Then e(m)(0, kj) = 0 for
m = 0, 1, . . . , mj − 1 (the derivative with respect to k) and
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ϕ(m)(x, λj) =
(

d
dλ

)m

ϕ(x, λ)|λ=λj ∈ L2(0,∞),

ϕ(m)(0, λj) = 0 for m = 0, 1, . . . ,mj − 1.

Therefore, the functions ϕ(m)(x, λj), m = 0, 1, . . . ,mj − 1, are eigenfunction and
associated functions (Jordan functions) of the operator A, corresponding to the
eigenvalue λj :

Aϕ(0) = λjϕ
(0), Aϕ(m) = λjϕ

(m) + ϕ(m−1), m = 1, . . . , mj − 1.

Let m′
j denote the multiplicity of the root rj of the equation e(0, k) = 0. Then

ϕ(m)(0, µj) = 0, m = 0, 1, . . . , m′
j − 1, but the functions ϕ(m)(x, µj) are not now in

L2(0,∞), we can state only that

sup
0≤x<∞

∣∣ϕ(m)(x, µj)
∣∣

(1 + x)m
< ∞, m = 0, 1, . . . .

The functions ϕ(m)(x, µj), m = 0, 1, . . . , m′
j−1, are Jordan functions of the operator

A, corresponding to the spectral singularity µj .
For a function f ∈ L2(0,∞) the following expansion in eigenfunctions holds:

f(x) =
1
π

∫ ∞

0

F (λ)[Bϕ(x, λ)]

√
λ dλ

e(0,
√

λ)e(0,−
√

λ)

+
N∑

j=1

mj−1∑
m=0

Mjm(f)ϕ(m)(x, λj)

+
N ′∑

j=1

m′
j−1∑

m=0

M ′
jm(f)ϕ(m)(x, µj), (17)

where

F (λ) =
∫ ∞

0

f(x)ϕ(x, λ) dx

and Mjm(f), M ′
jm(f) are some numbers depending on the function f . Note that

the integral
∫ ∞

0

F (λ)ϕ(x, λ)

√
λ dλ

e(0,
√

λ)e(0,−
√

λ)
(18)

does not, in general, converge if there are spectral singularities (at which e(0,
√

λ) =
0). The operation B used in (17) regularizes the divergent integral (18) as follows.
For an arbitrary function Φ(λ) which is differentiable sufficiently often at the points
µ1, . . . , µN ′ , we put

[BΦ(λ)] = Φ(λ)−
N ′∑

j=1

m′
j−1∑

m=0

Bjm(λ)Φ(m)(µj),
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where

Bjm(λ) =
{

(λ−µj)
m

m! for |λ− µj | < δ,
0 for |λ− µj | ≥ δ,

in which δ > 0 is a sufficiently small number. Note also that the expansion (17)
converges to f(x), in general, in a norm weaker than the norm of L2(0,∞) (see
[19], Appendix II for details).

The expansion formula (17) shows that if the operator A has spectral singular-
ities, then the eigenfunctions corresponding to the eigenvalues and the continuous
spectrum are not complete and one should include the eigenfunctions corresponding
to the spectral singularities as well to get a complete system of eigenfunctions.

Example 6. Operator with a given spectral singularity.

Take an arbitrary real number k0 6= 0 and put

p(x) =
u′′(x)
u(x)

+ k2
0 for 0 ≤ x ≤ b

and

p(x) = 0 for b < x < ∞, (19)

where u(x) is a twice continuously differentiable function on 0 ≤ x ≤ b such that

u(0) = 0, u(b) = eibk0 , u′(b) = ik0eibk0 .

Then the Jost solution e(x, k) introduced in Example 5 has the form, for k = k0,

e(x, k0) =
{

u(x) for 0 ≤ x ≤ b,
eixk0 for b < x < ∞.

Therefore, e(0, k0) = u(0) = 0 and hence the point λ0 = k2
0 is a spectral singularity

for the operator A defined in Example 5 with the potential p(x) given in (19).

Example 7 (see [1]). Consider the same operator A as in Example 5, but replace
the boundary condition (13) by

y′(0)− θy(0) = 0, (20)

where θ is a complex number.

Let e(x, k) be the same solution of eq. (14) as in Example 5, but ϕ(x, λ) be the
solution of eq. (14) satisfying the initial conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = θ.

Note that ϕ(x, λ) satisfies the boundary condition (20).
The resolvent Rλ = (A− λI)−1 is an integral operator of the form

Rλf(x) =
∫ ∞

0

R(x, ξ, λ)f(ξ)dξ
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with the kernel

R(x, ξ, λ) =
R1(x, ξ, λ)

ω(λ)
,

where ω(λ) is equal to the Wronskian of the solutions ϕ(x, λ) and e(x, k),

ω(λ) = Wx(ϕ, e) = ϕ(x, λ)e′(x, k)− ϕ′(x, λ)e(x, k)

= ϕ(0, λ)e′(0, k)− ϕ′(0, λ)e(0, k) = e′(0, k)− θe(0, k),

and

R1(x, ξ, λ) = −
{

ϕ(x, λ)e(ξ, k) for 0 ≤ x ≤ ξ < ∞,
ϕ(ξ, λ)e(x, k) for 0 ≤ ξ ≤ x < ∞.

Therefore, spectral singularities of A are those points λ0 = k2
0 (Im k0 ≥ 0) for

which e′(0, k0) − θe(0, k0) = 0 but λ0 = k2
0 is not an isolated eigenvalue of the

operator A.

Example 8. Another operator with a given spectral singularity.

Consider the operator A generated in L2(0,∞) by the differential expression

l(y) = −y′′(x), 0 < x < ∞,

subject to the boundary condition

y′(0)− θy(0) = 0.

Then we have

e(x, k) = eixk and e′(0, k)− θe(0, k) = ik − θ.

Therefore, if θ is a pure imaginary complex number, then λ = (−iθ)2 = −θ2 ∈
[0,∞) is a spectral singularity for the operator A.

6. Operators on the whole axis

Example 9 (see [20]). Consider the operator A generated in the Hilbert space
L2(−∞,∞) by the differential expression

l(y) = −y′′ + p(x)y, −∞ < x < ∞,

and suppose that
∫ ∞

−∞
(1 + |x|) |p(x)| dx < ∞.

The equation

−y′′ + p(x)y = k2y, −∞ < x < ∞,
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has the solutions (Jost solutions) e+(x, k) and e−(x, k) for Im k ≥ 0 such that

e+(x, k) = eixk[1 + o(1)] as x →∞,

e−(x, s) = e−ixk[1 + o(1)] as x → −∞.

The resolvent Rλ = (A− λI)−1 is the integral operator

Rλf(x) =
∫ ∞

−∞
R(x, ξ, λ)f(ξ)dξ

with the kernel

R(x, ξ, λ) =
R1(x, ξ, λ)

ω(λ)
,

where ω(λ), with λ = k2, is equal to the Wronskian of the solutions e−(x, k) and
e+(x, k),

ω(λ) = Wx(e−, e+) = e−(x, k)e′+(x, k)− e′−(x, k)e+(x, k)

= e−(0, k)e′+(0, k)− e′−(0, k)e+(0, k),

and

R1(x, ξ, λ) = −
{

e−(x, k)e+(ξ, k) for −∞ < x ≤ ξ < ∞,
e−(ξ, k)e+(x, k) for −∞ < ξ ≤ x < ∞.

Therefore, spectral singularities of A are those points λ0 = k2
0 (Im k0 ≥ 0) for which

e−(0, k0)e′+(0, k0)−e′−(0, k0)e+(0, k0) = 0 but λ0 = k2
0 is not an isolated eigenvalue

of the operator A.

Example 10 (see [21]). Consider the operator A generated in the Hilbert space
L2(−∞,∞) by the differential expression

l(y) = −y′′ + p(x)y, −∞ < x < ∞,

with the complex periodic potential

p(x) =
∞∑

n=1

pneinx, pn ∈ C,

∞∑
n=1

|pn| < ∞.

The equation

−y′′ + p(x)y = k2y, −∞ < x < ∞,

has a solution ϕ of the form

ϕ(x, k) = eixk

(
1 +

∞∑
n=1

1
n + 2k

∞∑
α=n

vnαeiαx

)
. (21)
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The resolvent Rλ = (A− λI)−1 is the integral operator

Rλf(x) =
∫ ∞

−∞
R(x, ξ, λ)f(ξ)dξ

with the kernel

R(x, ξ, λ) =
1

2ik

{
ϕ(x,−k)ϕ(ξ, k) for −∞ < x ≤ ξ < ∞,
ϕ(x, k)ϕ(ξ,−k) for −∞ < ξ ≤ x < ∞,

(22)

where λ = k2. The spectrum of the operator A is purely continuous and coincides
with the real interval [0,∞). Since the solution ϕ(x, k) defined by (21) may have
singularities at the points k = −n/2 for n = 1, 2, . . ., we see from (22) that the
resolvent kernel R(x, ξ, λ) may have singularities at these points. Therefore, the
points λn = (−n/2)2 = n2/4, n = 1, 2, . . ., which belong to the interval [0,∞), may
be spectral singularities for the operator A. Note that these points certainly are
spectral singularities for the one-term potential p(x) = eix.
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