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Abstract. We investigate the quasi-exact solutions of an analogous Schrödinger wave
equation for two-dimensional non-Hermitian complex Hamiltonian systems within the
framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 +
ip4, px = p1 + ix3, py = p2 + ix4. Explicit expressions for the energy eigenvalues and
eigenfunctions for ground and first excited states of a two-dimensional PT -symmetric
sextic potential and some of its variants are obtained. The eigenvalue spectra are found
to be real within some parametric domains.
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1. Introduction

Quantum systems characterized by non-Hermitian Hamiltonians are of great inter-
est in several areas of theoretical physics like superconductivity, population biology,
quantum cosmology, condensed matter physics, quantum field theory, and so on
[1]. Therefore, in the last few years the study of complex potentials has
become important for obtaining better theoretical understanding of some newly
discovered phenomena in physics and chemistry, like the phenomena pertaining to
resonance scattering in atomic, molecular, and nuclear physics and to some chemical
reactions [2].

A complex (non-Hermitian) Hamiltonian H can provide real and bounded eigen-
values for certain domains of the underlying parameters if H is invariant under the
simultaneous action of the space (P) and time (T ) reversal [3]. Now it is possible
to study complex Hamiltonians (PT -symmetric) which were not considered earlier
for not meeting the Hermiticity requirement [4–9].

There are various ways of complexifying a given Hamiltonian [10]. However, in
the present work we use a scheme due to Xavier and de Aguiar [11], used to develop
an algorithm for the computation of the semiclassical coherent state propagator, to
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transform potentials on an extended complex phase space (ECPS). In this approach
the transformations for positions and momenta in two dimensions are defined as

x = x1 + ip3, y = x2 + ip4,

px = p1 + ix3, py = p2 + ix4. (1)

The presence of variables x3, x4, p3, p4 in the above transformations may be regarded
as some sort of coordinate–momentum interactions of the dynamical system [10].
This approach has also been utilized in the study of classical systems, particu-
larly for tracing complex dynamical invariants and for obtaining the solutions of
diffusion reaction equation of a number of classical dynamical systems [10,12,13].
Transformations similar to eq. (1) have also been used in the study of nonlinear evo-
lution equations in the context of amplitude-modulated nonlinear Langmuir waves
in plasma [14].

Recently, in some studies the solutions of an analogous Schrödinger wave equation
(ASE) have been reported using ECPS approach [8,9]. However, such studies are
confined to one-dimensional systems only. An extension of such studies in higher di-
mensions is desirable to explore the possibilities of finding more applications. With
this motivation we have generalized ECPS approach in two dimensions and studied
some interesting two-dimensional complex systems and found energy eigenvalues
and eigenfunctions for ground and first two excited states [15,16]. With the same
spirit, in the present work, to expand the domain of applications of ECPS approach,
we investigate the solution of the ASE for a PT -symmetric coupled complex sextic
potential. Various forms of sextic potential, real as well as complex forms, are stud-
ied by many authors [9,17–21]. However, most of such studies are again confined
to one-dimensional systems. The study of such potentials may be of interest in
various fields, particularly in fibre optics and quantum chemistry.

The organization of the paper is as follows: in §2, we shall develop the math-
ematical formulation within the framework of ECPS in two dimensions, for com-
puting eigenvalue spectra of two-dimensional complex systems. In §3, eigenvalues
and eigenfunctions of a PT -symmetric sextic potential in two dimensions for the
ground and first excited states will be investigated. Finally, concluding remarks are
presented in §4.

2. The method

For a two-dimensional complex Hamiltonian system H(x, y, px, py), the ASE (for
h̄ = m = 1) is written as

Ĥ(x, y, px, py)ψ(x, y) = Eψ(x, y), (2)

where

Ĥ(x, y, px, py) = −1
2

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y). (3)

Here we only present time-independent stationary state solutions of eq. (2) for the
sake of convenience. Now, using the transformations (1), we obtain
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∂

∂x
=

1
2

(
∂

∂x1
− i

∂

∂p3

)
,

∂

∂y
=

1
2

(
∂

∂x2
− i

∂

∂p4

)
,

∂

∂px
=

1
2

(
∂

∂p1
− i

∂

∂x3

)
,

∂

∂py
=

1
2

(
∂

∂p2
− i

∂

∂x4

)
. (4)

Note that the momentum operators px = −ih̄ ∂
∂x and py = −ih̄ ∂

∂y of the con-
ventional quantum mechanics under the transformations (1) reduce to the forms:
p1 + ix3 = −i

2 ( ∂
∂x1

− i ∂
∂p3

) and p2 + ix4 = −i
2 ( ∂

∂x2
− i ∂

∂p4
). These relations give

p1 = −1
2

∂
∂p3

, x3 = −1
2

∂
∂x1

, p2 = −1
2

∂
∂p4

and x4 = −1
2

∂
∂x2

. These results lead to
the commutation relations namely, [x1, x3] = [p3, p1] = [x2, x4] = [p4, p2] = 1,
[xi, pj ] = 0, where i, j = 1, 2, 3, 4.

Also the complex coordinate transformations (1) preserve the fundamental com-
mutation relations, [x, px] = [y, py] = i, which can easily be verified using eqs (1)
and (4).

Now consider V (x, y), ψ(x, y) and E as complex quantities

V = Vr + iVi, ψ = ψr + iψi, E = Er + iEi,

where subscripts r and i denote the real and imaginary parts of the corresponding
quantities and other subscripts to these quantities separated by a comma will denote
the partial derivatives of the quantity concerned.

Thus, using eq. (4) in eq. (3) and using the above equations, the ASE (2), after
separating real and imaginary parts, reduces to a pair of coupled partial differential
equations as

−1
8
(ψr,x1x1 − ψr,p3p3 + 2ψi,x1p3 + ψr,x2x2 − ψr,p4p4 + 2ψi,x2p4)

+Vrψr − Viψi = Erψr − Eiψi, (5a)

−1
8
(ψi,x1x1 − ψi,p3p3 − 2ψr,x1p3 + ψi,x2x2 − ψi,p4p4 − 2ψr,x2p4)

+Vrψi + Viψr = Erψi + Eiψr. (5b)

The Cauchy–Riemann analyticity conditions for ψ(x, y) are given as

ψr,x1 = ψi,p3 , ψr,p3 = −ψi,x1 , ψr,x2 = ψi,p4 , ψr,p4 = −ψi,x2 . (6)

Other higher-order conditions which ψr and ψi have to satisfy are derived from eq.
(6) as

∂2ψm

∂x2
1

+
∂2ψm

∂p2
3

= 0,
∂2ψm

∂x2
2

+
∂2ψm

∂p2
4

= 0,

∂2ψm

∂x1x2
+

∂2ψm

∂p3p4
= 0,

∂2ψm

∂x1p4
− ∂2ψm

∂x2p3
= 0, (7)

where m = i, r. Note that the analyticity conditions (6) and the other conditions
listed in eq. (7) on eigenfunctions greatly simplifies the underlying computation in
determining the nature of the eigenvalue spectra.
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Hence, in view of eqs (6), eqs (5a) and (5b) are written as

−1
2
(ψr,x1x1 + ψr,x2x2) + Vrψr − Viψi = Erψr − Eiψi, (8a)

−1
2
(ψi,x1x1 + ψi,x2x2) + Vrψi + Viψr = Erψi + Eiψr. (8b)

We now make an ansatz for the wave function ψ(x, y) as

ψ(x, y) = φ(x, y) exp[g(x, y)], (9)

where φ(x, y) and g(x, y) are complex functions and are expressed as

φ = φr + iφi, g = gr + igi. (10)

Substituting eq. (10) in eq. (9), the real and imaginary parts of ψ(x, y) become

ψr = egr(φr cos gi − φi sin gi), ψi = egr(φi cos gi + φr sin gi). (11)

Equations (8a) and (8b), with the help of eq. (11), are written as

gr,x1x1 + gr,x2x2 + (gr,x1)
2 + (gr,x2)

2 − (gi,x1)
2 − (gi,x2)

2

+
1

(φ2
r + φ2

i )
[φr(φr,x1x1 + φr,x2x2 + 2φr,x1gr,x1 + 2φr,x2gr,x2

−2φi,x1gi,x1 − 2φi,x2gi,x2) + φi(φi,x1x1 + φi,x2x2 + 2φr,x1gi,x1

+2φr,x2gi,x2 + 2φi,x1gr,x1 + 2φi,x2gr,x2)] + 2(Er − Vr) = 0, (12a)

gi,x1x1 + gi,x2x2 + 2gr,x1gi,x1 + 2gr,x2gi,x2 +
1

(φ2
r + φ2

i )
×[φr(φi,x1x1 + φi,x2x2 + 2φr,x1gi,x1 + 2φr,x2gi,x2 + 2φi,x1gi,x1

+2φi,x2gi,x2) + φi(−φr,x1x1 − φr,x2x2 + 2φi,x1gi,x1 + 2φi,x2gi,x2

−2φr,x1gi,x1 − 2φr,x2gi,x2)] + 2(Ei − Vi) = 0. (12b)

Note that, for given forms of φ(x, y) and g(x, y), the rationalization of eqs (12a)
and (12b) yield the real and imaginary parts of the eigenvalue spectra for a given
system.

However, the ground state solutions for complex systems can be obtained by
choosing φ(x, y) as constant in eqs (12a) and (12b). Thus for ground state solutions
eqs (12a) and (12b) reduce to

gr,x1x1 + gr,x2x2 + (gr,x1)
2 + (gr,x2)

2 − (gi,x1)
2

− (gi,x2)
2 + 2(Er − Vr) = 0, (13a)

gi,x1x1 + gi,x2x2 + 2gr,x1gi,x1 + 2gr,x2gi,x2 + 2(Ei − Vi) = 0. (13b)

Equations (13a) and (13b) now can be rationalized to obtain ground state eigen-
values for a given potential.

In what follows, we use the derivations made in the present section to solve the
ASE for two-dimensional complex sextic potentials.
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3. Sextic potential

Here, we consider a two-dimensional complex sextic potential and obtain the eigen-
value spectrum for this by solving the ASE. A general even powered sextic potential
is written as

V (x, y) = a20x
2 + a02y

2 + a11xy + a40x
4 + a04y

4 + a22x
2y2 + a13xy3

+a31x
3y + a24x

2y4 + a42x
4y2 + a60x

6 + a06y
6, (14)

where aij are real coupling parameters.
The PT -symmetric form of the potential (14) is obtained by applying the trans-

formations (1) along with the condition

(x1, p3, x2, p4, p1, x3, p2, x4; i) → (−x1, p3,−x2, p4, p1,−x3, p2,−x4;−i).

The real and imaginary parts of the PT -symmetric potential (14) are given by

Vr = a20(x2
1 − p2

3) + a02(x2
2 − p2

4) + a11(x1x2 − p3p4)
+a40(x4

1 + p4
3 − 6x2

1p
2
3) + a04(x4

2 + p4
4 − 6x2

2p
2
4)

+a22(x2
1x

2
2 + p2

3p
2
4 − x2

1p
2
4 − x2

2p
2
3 − 4x1x2p3p4)

+a31(x3
1x2 + p3

3p4 − 3x1x2p
2
3 − 3x2

1p3p4)
+a13(x1x

3
2 + p3p

3
4 − 3x1x2p

2
4 − 3x2

2p3p4)
+a60(x6

1 − p6
3 − 15x4

1p
2
3 + 15x2

1p
4
3)

+a06(x6
2 − p6

4 − 15x4
2p

2
4 + 15x2

2p
4
4)

+a42(−x4
1p

2
4 − 8x3

1x2p3p4 + 8x1x2p
3
3p4 − p4

3p
2
4

−6x2
1x

2
2p

2
3 + x2

2p
4
3 + x4

1x
2
2 + 6x2

1p
2
3p

2
4)

+a24(−x4
2p

2
3 − 8x1x

3
2p3p4 + 8x1x2p3p

3
4

−p2
3p

4
4 − 6x2

1x
2
2p

2
4 + x2

1p
4
4 + x2

1x
4
2 + 6x2

2p
2
3p

2
4), (15a)

Vi = 2a20x1p3 + 2a02x2p4 + a11(x1p4 + x2p3)
+a13(3x1x

2
2p4 − x1p

3
4 + x3

2p3 − 3x2p3p
2
4)

+a31(3x2
1x2p3 − x2p

3
3 + x3

1p4 − 3x1p
2
3p4)

+2a22(x2
1x2p4 − x2p

2
3p4 + x1x

2
2p3 − x1p3p

2
4)

+4a40(x3
1p3 − x1p

3
3) + 4a04(x3

2p4 − x2p
3
4)

+a60(6x5
1p3 + 6x1p

5
3 − 20x3

1p
3
3)

+a06(6x5
2p4 + 6x2p

5
4 − 20x3

2p
3
4)

+2a42(2x3
1x

2
2p3 + x4

1x2p4 + x2p
4
3p4

−2x3
1p3p

2
4 − 2x1x

2
2p

2
3 + 2x1p

3
3p

2
4 − 6x2

1x2p
2
3p4)

+2a24(2x2p
2
3p

3
4 + 2x2

1x
3
2p4 − 6x1x

2
2p3p

2
4 + x1p3p

4
4

−2x3
2p

2
3p4 − 2x2

1x2p
3
4 + x1x

4
2p3). (15b)
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3.1 Ground state solution

For obtaining the ground state solution for the sextic potential, we choose
φ(x1, p3, x2, p4) = 1 and the ansatz for gr(x1, p3, x2, p4) and gi(x1, p3, x2, p4) are
considered as

gr =
1
2
α20(x2

1 − p2
3) +

1
2
α02(x2

2 − p2
4) + α11(x1x2 − p3p4)

+
1
4
α40(x4

1 + p4
3 − 6x2

1p
2
3) +

1
4
α04(x4

2 + p4
4 − 6x2

2p
2
4)

+
1
2
α22(x2

1x
2
2 + p2

3p
2
4 − x2

1p
2
4 − x2

2p
2
3 − 4x1x2p3p4), (16)

gi = α20x1p3 + α02x2p4 + α11(x1p4 + x2p3)
+α40(x3

1p3 − x1p
3
3) + α04(x3

2p4 − x2p
3
4)

+α22(x1x
2
2p3 − x1p3p

2
4 + x2

1x2p4 − x2p
2
3p4). (17)

Now, on rationalization of eqs (13a) and (13b), after substituting equations (15a)–
(17), we obtain

Er = −1
2
(α02 + α20), Ei = 0, (18a)

α22 + 3α40 + α2
11 + α2

20 = 2a20, (18b)
α22 + 3α04 + α2

11 + α2
02 = 2a02, (18c)

α20α11 + α02α11 = a11, (18d)
α20α22 + α02α22 = a22, (18e)
α11α22 + α11α04 = 2a13, (18f)
α11α22 + α11α40 = 2a31, (18g)
α2

22 + 2α22α04 = 2a24, (18h)
α2

22 + 2α22α40 = 2a42, (18i)
α20α40 = a40, (18j)
α02α04 = a04, (18k)
α2

40 = 2a60, (18l)
α2

04 = 2a06. (18m)

In order to obtain the solutions of various wave function parameters αij in terms
of the potential parameters aij , we make some plausible choices among the wave
function parameters αij , i.e.

α20 = α02, α22 = −3α40 = −3α04. (19)

Thus from eqs (18b)–(18d) we obtain

α20 = α02 = −
√

a20 +
√

a2
20 − (a11/2)2, (20a)

α11 = −
√

a20 −
√

a2
20 − (a11/2)2, (20b)
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and eq. (18l) (or 18m) provides

α40 = α04 = −√2a60, α22 =
√

18a60. (21)

It is to be noted that the restrictions, eq. (19), render the potential parame-
ters a02 = a20, a13 = a31, a24 = a42, a04 = a40 and a06 = a60.

The remaining equations give four constraining relations among potential para-
meters as

√
2a60(a20 +

√
a2
20 − (a11/2)2)− a40 = 0, (22a)

√
2a60(a20 +

√
a2
20 − (a11/2)2) + a13 = 0, (22b)

√
72a60(a20 +

√
a2
20 − (a11/2)2) + a22 = 0, (22c)

3a60 − a24 = 0. (22d)

Although the presence of constraining relations, eqs (22a)–(22d), make the problem
quasi-solvable, such relations can be helpful in defining an appropriate sub-domain
in complex parametric space in which a given complex potential will provide real
spectra.

Finally, the eigenvalue for the ground state is given by

E0
r =

√
a20 +

√
a2
20 − (a11/2)2, (23)

and the eigenfunction is given by

ψ0(x, y) = exp
[
− 1

2

√
a20 +

√
a2
20 − (a11/2)2(x2 + y2)

−
√

a20 −
√

a2
20 − (a11/2)2xy

−1
4
√

2a60(x4 + y4 − 6x2y2)
]
. (24)

It is clear from eq. (23) that E0
r is real if a20 > 0 and a20 ≥ a11/2. Otherwise, it

is complex.
Note that the ground state solution of a real two-dimensional harmonic oscilla-

tor can easily be obtained from the general results, eqs (23) and (24), by taking
potential parameters a20 = a02 and remaining parameters as zero in eq. (14), as

Er =
√

2a20, ψ(x, y) = exp
[
−

√
a20

2
(x2 + y2)

]
. (25)

We can also obtain the ground state eigenvalue of the real form of the potential
(14) from eqs (23) and (24) by setting the variables x3, x4, p3, p4 zero.
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3.2 First excited state solution

For obtaining the first excited state solution for the sextic potential (14), take the
function φ(x1, x2, p3, p4) as

φ(x1, x2, p3, p4) = αx + βy + γ, (26)

or equivalently, using eq. (1), we have

φr(x1, p3, x2, p4) = αx1 + βx2 + γ, φi(x1, p3, x2, p4) = αp3 + βp4.

(27)

Here α, β and γ are considered as real constants. The functions gr and gi are the
same as considered in ground state solutions.

On substituting eqs (15a)–(17) and (27) in eqs (12a) and (12b), we obtain again
a set of 14 equations. The solutions of these equations can be obtained by assuming
α20 = α02, α22 = −5α40 = −5α04, α = −β and γ = 0. The solutions are written
as

α20 = α02 = −
√

a20 +
√

a2
20 − (a11 + 6

√
2a60)2/4, (28a)

α11 = −
√

a20 −
√

a2
20 − (a11 + 6

√
2a60)2/4, (28b)

α40 = α04 = −√2a60, α22 =
√

50a60. (28c)

Finally, the eigenvalue and eigenfunction for the first excited state are given as

E1
r = 2

√
a20 +

√
a2
20 − (a11 + 6

√
2a60)2/4

−
√

a20 −
√

a2
20 − (a11 + 6

√
2a60)2/4, (29)

ψ1(x, y) = α(x− y)

× exp
[
− 1

2

√
a20 +

√
a2
20 − (a11 + 6

√
2a60)2/4 (x2 + y2)

−
√

a20 −
√

a2
20 − (a11 + 6

√
2a60)2/4 xy

−1
4
√

2a60(x4 + y4 − 10x2y2)
]
. (30)

The eigenvalue is again real and discrete for a20 > 0 and 2a20 ≥ (a11 + 6
√

2a60).
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3.3 Sextic potential with inverse/cross terms

Here we study some other forms of PT -symmetric sextic potential with inverse
harmonic (centrifugal barrier) terms and some other cross terms. Some implications
of such inverse/cross terms in a potential are discussed in [22] in reference to the
solution of the Schrödinger equation for a real coupled quartic potential in two
dimensions.

Case 1. In the first case, consider a PT -symmetric sextic potential with inverse
harmonic terms as

V (x, y) = V13 +
A

x2
+

B

y2
, (31)

where the term V13 is the sextic potential given in eq. (14) and A and B are real
constants.

Note that such one-dimensional sextic potentials are studied by many authors
[9,19–21]. Levai and Arias [20] showed that a sextic potential with inverse square
term has the properties of the Bohr Hamiltonian which describes collective motion
in nuclei in terms of shape variables.

The real and complex components of the potential (31), using the transformations
(1), are written as

Vr = V1 +
A(x2

1 − p2
3)

(x2
1 + p2

3)2
+

B(x2
2 − p2

4)
(x2

2 + p2
4)2

, (32a)

Vi = V2 +
2Ax1p3

(x2
1 + p2

3)2
+

2Bx2p4

(x2
2 + p2

4)2
, (32b)

where the forms of V1 and V2 are the same as given in eqs (15a) and (15b) respec-
tively.

The forms of gr and gi for the present case are considered as

gr = g1 − 1
2
γ1 log(x2

1 + p2
3)−

1
2
γ2 log(x2

2 + p2
4), (33a)

gi = g2 +
1
2
γ1 tan−1

(
x1

p3

)
+

1
2
γ2 tan−1

(
x2

p4

)
, (33b)

where the functions g1 and g2 are the same as given in eqs (16) and (17) respectively.
After substituting eqs (32a) and (33b) in eqs (13a) and (13b), we get the following

equations:

Er = −1
2
(α02 + α20) + γ2α02 + γ1α20, Ei = 0, (34a)

α22(1− 2γ2) + α40(3− 2γ1) + α2
11 + α2

20 = 2a20, (34b)
α22(1− 2γ1) + α04(3− 2γ2) + α2

11 + α2
02 = 2a02, (34c)

α20α11 + α02α11 = a11, (34d)
α20α22 + α02α22 = a22, (34e)
α11α22 + α11α04 = 2a13, (34f)
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α11α22 + α11α40 = 2a31, (34g)
α2

22 + 2α22α04 = 2a24, (34h)
α2

22 + 2α22α40 = 2a42, (34i)
α20α40 = a40, (34j)
α02α04 = a04, (34k)
α2

40 = 2a60, (34l)
α2

04 = 2a06, (34m)
γ2
1 + γ1 = 2A, (34n)

γ2
2 + γ2 = 2B, (34o)

α11γ1 = 0, (34p)
α11γ2 = 0. (34q)

For obtaining the solutions of the above equations, we again make the following
choices among the wave function parameters αij :

α20 = α02, α22 = −3α40 = −3α04, γ1 = γ2. (35)

These choices lead to a02 = a20, a24 = a42, a04 = a40 and a06 = a60, A = B and
a13 = a31 = a11 = 0.

The solutions of various wave function parameters are given as

α20 = α02 = −
√

2a20 − 2
√

8a60(1 +
√

1 + 8A), (36a)

α40 = α04 = −√2a60, α22 =
√

18a60, α11 = 0, (36b)

γ1 = γ2 = −1
2
(1 +

√
1 + 8A). (36c)

From the above solutions, the energy eigenvalue and the corresponding eigenfunc-
tion are written as

E0
r =

√
2a20 −

√
8a60(1 +

√
1 + 8A)(2 +

√
1 + 8A), (37)

ψ0(x, y) =
√

xy(xy)−
√

1+8A/2

× exp
[
− 1

2

√
2a20 −

√
8a60(1 +

√
1 + 8A)(x2 + y2)

−1
4
√

2a60(x4 + y4 − 6x2y2) +
i

2
(−1 +

√
1 + 8A)

×
(

tan−1

(
x1

p3

)
+ tan−1

(
x2

p4

))]
. (38)

Again E0
r is real for positive values of A, a20 and a60, and a20 ≥ √

8a60(1 +√
1 + 8A).
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Case 2. In this case, we consider again the PT -symmetric sextic potential with
inverse harmonic and some other cross terms as

V (x, y) = V13 +
A1

x2
+

B1

y2
+ A2

x

y
+ B2

y

x
, (39)

where the parameters A1, A2, B1 and B2 are real.
The ground state eigenvalue spectrum of this case can straightforwardly be ob-

tained by following the same route as in the previous cases under the same ansatz
(33a) and (33b) for gr and gi and within the same parametric restrictions.

The energy eigenvalue and the corresponding eigenfunction are written as

E0
r =

√
a20 +

√
2a60(

√
1 + 8A1 − 1) +

√
a20 +

√
2a60(

√
1 + 8A1 − 1)2 − a11/4

×(
√

1 + 8A1 − 2), (40)

ψ0(x, y) =
√

xy(xy)−
√

1+8A1/2

× exp
[
α20(x2 + y2) + α11xy − 1

4
√

2a60(x4 + y4

−6x2y2) +
i

2
(−1 +

√
1 + 8A)

×
(

tan−1

(
x1

p3

)
+ tan−1

(
x2

p4

))]
, (41)

where α20 and α11 are given as

α20 =

√
a20 +

√
2a60(

√
1 + 8A1 − 1) +

√
a20 +

√
2a60(

√
1 + 8A1 − 1)2 − a11/4,

α11 =

√
a20 +

√
2a60(

√
1 + 8A1 − 1)−

√
a20 +

√
2a60(

√
1 + 8A1 − 1)2 − a11/4.

Again, within some parametric domain the energy eigenvalue will be real and
positive.

4. Conclusion

With a view to explore more nontrivial applications of the ECPS method, in the
present work, we investigated the quasi-exact solutions of the ASE under a suit-
able ansatz for the eigenfunction. The ground and excited state energies and the
corresponding eigenfunctions are found for a two-dimensional PT -symmetric com-
plex sextic potential. We also found the ground state solutions of the ASE of
some variants of the sextic potential. In all the systems considered here, potential
coupling parameters are taken as real and the complexities are generated through
transformations (1).
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In the ECPS method, along with coordinate complexities, parametric complex-
ification can be introduced. These complex potential parameters in turn yield
complex eigenvalues. The imaginary parts Ei of eigenvalues E can be made zero by
considering suitable choices of the potential parameters, which will then give real
eigenvalues within some parametric domain. This is an interesting feature of the
method as it provides us additional flexibility for obtaining real eigenvalue spectra
of non-Hermitian Hamiltonian systems.

Although in the present study, we have not explicitly computed the normalization
constants for wave functions, these can be obtained by generalizing the condition
of [9] for two-dimensional systems, i.e.

N2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ2(x1, p3, x2, p4) dx1 dp3 dx2 dp4 = 1.

It is also mentioned that from the general expressions of the eigenvalues and the
eigenfunctions found in the present work, the eigenvalues and the eigenfunctions of
analogous real systems can directly be obtained by setting x3, x4, p3, p4 as zero.

The ECPS approach in two dimensions can be utilized to study more nontrivial
two-dimensional potentials. However, for more involved complex systems, particu-
larly in higher dimensions, studies may become a bit tedious due to the expansion
of the algebra and difficulty in choosing appropriate forms of φ, gr and gi of the
eigenfunction.
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