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Abstract. In this paper, based on the tight-binding Hamiltonian model and within the
framework of a generalized Green’s function technique, the electronic conduction through
the poly(GACT)–poly(CTGA) DNA molecule in SWNT/DNA/SWNT structure has been
numerically investigated. In a ladder model, we consider DNA as a planar molecule
containing M cells and four further sites (two base pair sites and two backbone sites) in
each cell, sandwiched between two semi-infinite single-walled carbon nanotubes (SWNT)
as the electrodes. Having relied on Landauer formalism, we focussed on studying the
current–voltage characteristics of DNA, the effect of the coupling strength of SWNT/DNA
interface and the role of tube radius of nanotube contacts on the electronic transmission
through the foregoing structure. Finally, a characteristic time was calculated for the
electron transmission, which measures the delay caused by the tunnelling through the
SWNT/DNA interface. The results clearly show that the calculated characteristic time
and also the conductance of the system are sensitive to the coupling strength between
DNA molecule and nanotube contacts.

Keywords. Deoxyribonucleic acid; electronic transmission; carbon nanotube; ladder
model; Green’s function method.
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1. Introduction

The discovery that the deoxyribonucleic acid (DNA) can conduct the electric cur-
rent, has made it an interesting candidate for the roles that nature did not intend
for this molecule. In particular, the DNA could be useful in nanoelectronics for
designing the electric circuits, which could help to overcome the limitations that
silicon-based electronics is facing in recent years. However, the DNA electronics
does not aim to make something new. Its immediate goal is to improve the old con-
cepts in a new manner, although it may create entirely new ideas in nanoelectronics
during the process [1–3]. The nanoelectronic devices have been usually designed in
such a way that a single molecule is sandwiched between two electrodes (metallic
or organic). Considering the immense progresses in the field of nanofabrication,
studies have been undertaken towards the structures, such as carbon nanotubes
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(CNTs), as the nanoelectrodes [4–7]. The significantly improved switching char-
acteristics of the short organic field effect transistors (FET) with CNT electrodes
compared to the metallic ones are attributed to the excellent electrostatics attain-
able with the nanotube electrode geometry [8,9]. A number of experimental groups
have reported the measurements of the current–voltage characteristics of the DNA
molecule, which are, however, still quite controversial [10,11]. The DNA may be an
insulator [12,13], a semiconductor [14] or a metal [15,16]. In particular, the Porath
et al experiments [14], based on which, the DNA molecule is considered as a 10.4
nm long sequence, has an electrical characteristics similar to those of semiconductor
diodes, which allows the current to flow in just one direction have stimulated some
research interests towards the transport properties of the DNA. Accordingly, the
DNA may be an excellent candidate for the molecular electronics and may serve as a
molecular wire, transistor, switch or rectifier depending on its electronic properties
[10,17]. Also, several theoretical models, which range from the quantum mechanical
approaches, mostly use strictly one-dimensional tight-binding models [18–21] to the
density functional theory [22], have been developed for investigating the electron
transport properties of the DNA molecule. Several studies on the structural, elec-
tronic and conduction properties of the DNA have been published [15–20]. Most
studies have been focussed on understanding the details of the DNA electronic
structures, the nature of electronic states, impurities and how the geometrical fac-
tors affect the conduction properties of the DNA in the nanoelectronics devices
[1–4,23]. However, there are some significant factors, the influences of which on the
conductance through the electrode–(single)molecule–electrode structure have not
yet been fully studied. For example, the role of the radius of nanotube electrodes
[24] and the contact-dependent effects on the electronic transmission through the
molecule [25] and also the issue of how long the tunnelling electron actually spends
through the electrode/molecule interface potential are of particular interest [26,27].
Here, we focus on the role of SWNT/DNA coupling strength, as an important pa-
rameter in studying the electronic transport through the DNA. We calculate an
interaction time for the electron tunnelling through the SWNT/DNA interface. It
is shown that there is a close relationship between the coupling strength in the
interface and the above time-scale. We find that, as the coupling strength between
the CNT electrodes and the DNA molecule increases, the tunnelling time sharply
decreases. In the presented model, the typical system is considered as a planar
DNA molecule sandwiched between two semi-infinite armchair (l, l) single-walled
carbon nanotubes (SWNT) as the nanoelectrodes (figure 1). The model and the
explanation of the computational methods for the study of the conductance prop-
erties of the model structure are introduced in §2. The results and discussion are
presented in §3, followed by the conclusion in §4.

2. Methodology

As it is well-known, the nature of charge transfer and electron transport through
the DNA molecule depends on the understanding of its structural parameters. The
DNA consists of a double-helix with an aromatic π-stack core, where four types
of nucleobases (thymine, T; cytosine, C; adenine, A; guanine, G) participate in
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Figure 1. A schematic representation of the SWNT/DNA/SWNT structure.
The suggested ladder model for the DNA contains the cells connecting each
other.

Watson–Crick base pairing (G:C; A:T) [28]. A detailed knowledge of the DNA
structure suggests that the π–π interaction between the stacked base pairs in the
DNA could support extended charge transport. The density-functional calcula-
tions [22] have shown that the bases, especially guanine, are rich in π-orbitals. The
double-strand DNA could offer pathways for the long-range charge transport. The
electronic coupling through a duplex stack of nucleobases is expected to involve in
both intrastrand and interstrand pathways [29]. Here, we consider a ladder model
to study the DNA electronic properties, which includes the backbone structure of
the DNA, explicitly. As shown in figure 1, the DNA molecule in the ladder model
have two central conduction channels in which G and C (A and T) sites represent a
base-pair (bp), which are interconnected and further linked to the upper and lower
sites, representing the backbone. The backbone sites, however, are not intercon-
nected along the DNA sequence [17]. In the presented model, the DNA structure
as a two-dimensional layer, consisting of M cells and further four sites in each
cell, is set between two semi-infinite armchair (n,n) SWNTs as the electrode and
then the conductance properties of the system is numerically calculated, based on
well-known procedures particularly suitable for treating the electron transmission
through the mesoscopic structures, Landauer formalism and a generalized Green’s
function method. As illustrated in figure 1, each cell connects to the left (right) cell
through two horizontal hopping integrals, t0. Also, in a typical cell, the base-pair
sites connect to each other through a hopping integral tGC(tAT) and connect to the
upper and lower backbone sites via vertical hopping integrals, t. The first(end) cell,
via the linker groups, may be connected to the left(right) semi-infinite armchair (l,
l) SWNT as a nanocontact. In this study, we consider a ladder model for the DNA
molecule of M = 32 cells (128 sites), in which the nanocontacts are considered to
be the armchair (5,5).

2.1 The Hamiltonian model

The following generalized Hamiltonian is considered for the description of the
SWNT/DNA/SWNT structure:
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H = HSWNT + HDNA + HC, (1)

where HSWNT, HDNA and HC describe the semi-infinite SWNT nanocontacts, the
DNA Hamiltonian and the couplings of the contacts to DNA molecule, respectively.
The SWNTs (electron reservoirs) are modelled within the tight-binding approxi-
mation with only one π-orbital per atom. Accordingly, HSWNT, which can describe
well reasonably the band structure of a nanotube, especially near the Fermi level,
which is considered zero in this case, because the on-site energy is assumed to be
zero and each orbital is half-filled,

HSWNT =
∑

i

εi|i〉〈i| −
∑

i

ti,i+1|i〉〈i + 1|+ h.c., (2)

where |i〉 denotes the electron state in the reservoirs. For the semi-infinite SWNT
contacts, we set εi = ε0 for all i and also ti,i±1 = tSWNT between all i and i ± 1
for the nearest-neighbour hopping. HC, which denotes the interacting Hamiltonian
between the DNA molecule and the nanotube contacts, is given as

HC = −tc(|i〉〈1|+ |M〉〈i|). (3)

Here, tc denotes the interaction strength between the single electron states of
base-pairs in the cell of number 1(M) from the left(right) and the electron states in
the left(right) electrode of the DNA molecule. Using the Löwdin’s matrix partition
technique [30], we may rewrite the Hamiltonian of the total system as follows:

Heff = −ΣL|1〉〈1|+ HDNA − ΣR|M〉〈M |, (4)

where ΣL(ΣR) is the self-energy matrix resulting from the coupling of the DNA
molecule to the left(right) electrode. Now, considering the ladder model for the
DNA molecule, according to figure 1, the effective Hamiltonian (4) can be expressed
in the matrix form as follows:

Heff =




H1 T1 0 · · · · · · · · · · · · · · · 0

T+
1 H2 T2 0

...
...

...
...

...

0 T+
2 H3

. . . 0
...

...
...

...
... 0

. . . . . . . . . 0
...

...
...

...
... 0

. . . Hi−1
. . . 0

...
...

...
...

... 0 T+
i−1 Hi Ti 0

...
...

...
...

... 0
. . . Hi+1

. . . 0
...

...
...

...
... 0

. . . . . . TM−1

0 · · · · · · · · · · · · · · · 0 T+
M−1 HM




, (5)

where Hi is a 4 × 4 three-diagonal matrix describing the four sites within the ith
cell (see figure 1) and T+

i−1 and Ti are 4× 4 matrices describing the hopping to and
from the cell i. Thus:
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Table 1. The rescaled tight-binding parameters used
in this study [31].

On-site energies Hopping integrals (eV)

εG = 0.633 tGC = 0.90
εC = 0.723 tAT = 0.34
εA = 0.672 t = 1.50
εT = 0.744 t0 = 0.15

H1 =




ε11 t 0 0
t ε12 − Σ12 tGC 0
0 tGC ε13 − Σ13 t
0 0 t ε14


 ;

HM =




εM1 t 0 0
t εM2 − ΣM2 tTA 0
0 tTA εM3 − ΣM3 t
0 0 t εM4




Hi =




εi1 t 0 0
t εi2 tAT(CG) 0
0 tAT(CG) εi3 t
0 0 t εi4


 ; 1 < i < M ;

Ti =




0 0 0 0
0 −t0 0 0
0 0 −t0 0
0 0 0 0


 . (6)

Here, i = 1, M , j = 2, 3 and Σij = Σ. The matrix of self-energies is defined as

ΣL = ΣR = Σij =




0 0 0 0
0 Σ 0 0
0 0 Σ 0
0 0 0 0


 . (7)

Also, Eij = εij−z (i = 1, . . ., M and j = 1, 2, 3, 4), where εij are the on-site energies
within each cell, which is defined according to table 1 and z = E+i0+ is the complex
number whose real part, E, is the energy at which the transfer occurs. Here, the
rescaled parameters are used for the on-site energies of poly(GACT)–poly(CTGA)
structure, as listed in table 1. The parameters adapted for the effective Hamiltonian
in this work are rescaled by εbackbone = 12.27 eV [31]. So, εx = ε0

x/εbackbone with
x = G, C, A and T.

Now, the conductance of the SWNT/DNA/SWNT structure can be calculated,
based on the above-suggested model Hamiltonian. The most commonly used com-
putational scheme for calculating the (coherent-) conductance, g, are the Landauer
theory [32] and the Green’s function formalism [33,34]. The conductance g is sim-
ply proportional to the transmission coefficient, T (E), for the injected electrons at
the Fermi energy:
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g = g0T (E); g0 =
2e2

h
. (8)

The transmission coefficient can be calculated from the knowledge of the molecular
energy levels, the nature and the geometry of the contacts. Using the Fisher–Lee
formalism [35], the differential conductance may be expressed as

g = g0 |G1M (E)|2 ∆1(E + eV )∆M (E), (9)

where G1M (E) is the (1,M) element of the retarded Green’s function matrix of
the DNA molecule. ∆1(= ∆M), the spectral density matrix, is related to the semi-
infinite left(right) electrode Green’s function matrix. The details of how ∆ and
G1M (E) may be calculated are found in [24]. Having introduced the self-energy
corrections into the bare molecule Green’s function, electronic Green’s function of
the DNA molecule in the CNT/DNA/CNT sandwich is defined as

G−1 = G−1
m − ΣL − ΣR, (10)

where G−1
m and ΣL(R) are the retarded Green’s function of the bare DNA molecule

and the left(right) SWNT self-energy matrix, respectively. The operator of the
retarded Green’s function of the bare molecule is given by

Gm = (1z −HDNA)−1 ; z = E + i0+, (11)

in which HDNA represents the Hamiltonian of the bare molecule and 1 stands for the
identity matrix. In order to calculate the Green’s function matrix element G1M (E),
in eq. (9), which carries all the information about the molecular structure necessary
for the conductance calculation, the partitioning algorithm proposed by Mujica et
al has to be generalized [33] to the presented ladder model of the DNA structure.
Accordingly, G1M (E) can be found in the matrix form as follows:

G1M (E) = [Geff ]−1
1M =




G1 T1 0 · · · · · · · · · · · · · · · 0

T+
1 G2 T2 0

...
...

...
...

...

0 T+
2 G3

. . . 0
...

...
...

...
... 0

. . . . . . . . . 0
...

...
...

...
... 0

. . . Gi−1
. . . 0

...
...

...
...

... 0 T+
i−1 Gi Ti 0

...
...

...
...

... 0
. . . Gi+1

. . . 0
...

...
...

...
... 0

. . . . . . TM−1

0 · · · · · · · · · · · · · · · 0 T+
M−1 GM




−1

1M

, (12)

where Gi describes the Green’s function of the ith cell. Thus

G1 =




E11 t 0 0
t E12 + i∆12 tGC 0
0 tGC E13 + i∆13 t
0 0 t E14


 ;
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GM =




EM1 t 0 0
t EM2 + i∆M2 tTA 0
0 tTA EM3 + i∆M3 t
0 0 t EM4




Gi =




Ei1 t 0 0
t Ei2 tAT(CG) 0
0 tAT(CG) Ei3 t
0 0 t Ei4


 ; 1 < i < M (13)

in which, with i = 1, M and j = 2, 3, ∆ij = ∆, the imaginary part of the SWNT
self-energies, Σ, is given as

Σα = Λα − i∆α =
∑

mα,m′
α

(tc)mα(tc)m′
α
gα

mα,m′
α
; α = L(R), (14)

where mα and m′
α run over the interfacial end-atoms of the SWNTs. gα

mα,m′
α

is the
semi-infinite left(right) electrode Green’s function matrix and expressed as [36]

gny,n′y (E) =
1
2`

2∑̀

j=1

ϕj(ny)G̃j(E)ϕ∗j (n
′
y), (15)

where ϕj(ny) = exp(ikj
ynya), with kj

ya = πjl and 1 ≤ j ≤ 2l. We assume the x
direction to be parallel to the tube (and to the transport direction) and y to be the
finite transverse coordinate.

G̃(E) is the surface Green’s function given by [36]

G̃j(E) =
E − ε

4t2SWNT


1 + i

sin(qj
β∗a/2)√

((E − ε)/2tSWNT)2 − sin2 (πj/l)


 ;

β∗ = sign(E − ε), (16)

and

cos

(
qj
βa

2

)
= −

(
1
2

)
cos

(
πj

l

)
− β

2

√(
E − ε

2tSWNT

)2

− sin2

(
πj

l

)
. (17)

In general, there are N = 2l atomic positions over the interfacial end-atoms of the
nanotube. For an armchair (l,l) SWNT topology imposed, the number of carbon
sites at the interface are 2l. In this work we set l = 5.

According to the foregoing procedure, the electronic density of states (DOS) of
the system is calculated. The DOS at site i is given by

ρi(E) = − 1
π

Im {Gii(E)} . (18)

Using eqs (12) and (13), the diagonal elements of the Green’s function matrix are
obtained as follows:

Gii(E) = GK ; K 6= 1,M,

G11(E) = G1; GMM (E) = GM . (19)
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2.2 The characteristic tunnelling time

The important aspect of the molecular electronic structure, which has been less
studied and has a strong influence on the size of the transmission, is the electronic
coupling between the nanotube contacts and the DNA molecule. An expression
was found, which related tc, the coupling strength of SWNT/DNA interface to
an interaction time, describing the delay by the electron tunnelling through this
interface. Theoretically, the electron behaviour in a quantum mechanical system
is subject to the limitations imposed by the uncertainty principle. Therefore, the
study of the conductivity through the mesoscopic segments must be accurately
treated in order to characterize the electron transmission in these systems. So,
the characteristic interaction time, as expected, via the minimized energy–time
uncertainty relation, is given by

τ(E) =
–h

2∆E
, (20)

where ∆E is the change of the electron energy E during the tunnelling process.
For small ∆E, one may expand t(E), the transmission amplitude, as

t(E + ∆E) = t(E) + ∆E
∂t(E)
∂E

+ · · · .

For ∆E satisfying ∆E(∂t(E)/∂E) ≈ O(t(E)), the following form will be resulted
for the interaction time [39]:

τ(q) =
∣∣∣∣−

(
–h

tSWNT

)
1

t(q)
∂t(q)
∂q

∣∣∣∣ , (21)

where q = (ε0 − E)/tSWNT is set. To this end, using eqs (8) and (9) for |t(E)|2 =
T (E), one may obtain the following expression for τ(q):

τ(q) =
∣∣∣∣
(

–h
tSWNT

)
W (q)

∣∣∣∣ , (22)

where W (q) = 1 +
(

1
K(q)

)
∂K(q)

∂q and K(q) with χ = tSWNTξ2 (Γ1p + ΓMp) and δ =

t2SWNTξ4 (Γ1pΓMp − Γ1MΓM1) is found as K(q) = q2−χq + δ. Here, ξ = tc/tSWNT

and Γij are the matrix elements of Green’s function of the DNA molecule, which
are given by eqs (12) and (13). So

Γ1p = (G1)1p = E1p + i∆

ΓMp = (GM )Mp = EMp + i∆
p = 2, 3; Γ1M = ΓM1 = 0. (23)

Finally, the following form is obtained for τ(q):

τ(q) =
–h

|tSWNT|

∣∣∣∣
q2 + 2χ(tSWNT − 1)q + δ(tSWNT + 1)− χ

q2 − χq + δ

∣∣∣∣ . (24)
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Figure 2. Panels (a) and (b) show the electronic density of states (DOS)
and the logarithm of the transmission coefficient vs. the dimensionless para-
meter Energy/tSWNT for the SWNT/DNA/SWNT system. Using the model
parameters as mentioned in table 1, we set tSWNT = −3 eV, tc = 0.4 eV and
32 bps for the DNA molecule. The SWNTs are considered to be armchair
(5,5).

3. Results and discussion

Based on the formalism described in §2, some significant properties of the elec-
tronic conduction of the SWNT/DNA/SWNT structure were studied. To pro-
ceed, we study the electronic density of states (DOS) and the electron transmission
coefficient, T (E), through the DNA molecule in the foregoing structure. Pan-
els (a) and (b) in figure 2 illustrate the DOS and the logarithm of T (E) for the
SWNT/DNA/SWNT structure, respectively. The DNA molecule has 32 base pairs
(bps) and the SWNT electrodes are considered to be armchair (5,5). Here, the
SWNT/molecule coupling strength and the hopping integral in the SWNT struc-
ture are set tc = 0.4 eV and tSWNT = −3 eV, respectively. Figure 2 displays the
four allowed bands for poly(GACT)–poly(CTGA) structure, which are separated,
from left to right, by the relatively broad gaps ∆GA = 0.594 eV, ∆AC = 0.432
eV and ∆CT = 0.525 eV. As expected, the states in the guanine band have more
contribution to the charge conduction. This may be attributed to the richness of
π-orbitals on the base of guanine [22]. In addition, as mentioned in table 1, the
on-site potential of guanine is lower than that of cytosine, adenine and thymine.
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Figure 3. The current–voltage characteristics of the DNA molecule for low
temperature (T = 3 K, step-wise curve) and room temperature (T = 300 K,
smoothed curve) in the SWNT/DNA/SWNT system. Here, for armchair (5,5)
nanotubes as the electrodes, tSWNT = −3 eV, tc = 0.4 eV and 32 bps are set
for the DNA molecule.

The current–voltage (I–V ) characteristic of the system is shown in figure 3. To
calculate the current through the SWNT/DNA/SWNT structure, we consider the
standard transport formalism of electric current under an applied potential bias of
V [29,39]:

I =
2e

h

∫ +∞

−∞
dET (E)W (E − EF; eV ), (25)

where T (E) denotes the electron transmission coefficient of the DNA molecule in
the SWNT/DNA/SWNT structure and EF is the Fermi energy of the electrodes:

W (E, eV ) = f(E)− f(E + eV ), (26)

with the Fermi function f(E) =
(
eβE + 1

)−1 and β = (kBT )−1. The above Fermi
function is the difference between the charge distributions before and after the
transport [38,39]. The driving force, here, is the electric potential bias. Figure 3
shows the I–V characteristics for temperatures of 3 and 300 K in step-wise and
smoothed curves, respectively.

The I–V curves clearly show a nonlinear dependence. Our results represent a
good qualitative agreement with the electronic structure of the system (figure 2)
along the zero current part of the I–V curves. In other words, despite the existence
of the band gap with the average magnitude of ∼=0.517 eV between nucleobase
bands, the low-voltage parts of the I–V curves shows a zero-current gap ∼=2 V,
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Figure 4. A plot which shows the interaction time (in units of femtosecond)
vs. tc for the SWNT/DNA/SWNT system. Using the model parameters as
mentioned in table 1, we set tSWNT = −3 eV and 32 bps for the DNA molecule.
The SWNTs are considered to be armchair (5,5).

which reflect that many of the electronic states close to the gaps in the electronic
structure have a very low transmission probability.

Also, the steps in the I–V curve, at low temperature, may be explained as the
result of the fragmented electronic structure of the system. However, as the temper-
ature increases, this feature is modified, whilst at higher temperatures, the step-wise
part of the I–V curve is smoothed, as expected.

Using eq. (24) and considering the electrons with energies near Fermi en-
ergy (EF), figure 4 shows the results of the numerical calculations for τ(qf ) with
qf = (ε0 − EF)/tSWNT vs. different values of tc for a DNA molecule with 32 bps.
From figure 4, the strong dependence of τ(qf ) on the magnitude of tc can be clearly
seen. We see that the interaction time τ(qf ) decreases rapidly when the coupling
strength of the SWNT/DNA interface, i.e., tc increases and will be relatively con-
stant and approaches zero for tc ≥ 0.4 eV. In fact, increasing tc to the values more
than 0.4 eV leads to a considerable enhancement of the conductance of the sys-
tem. Our results show, once tc drops below ≈0.4 eV, that a significant retardation
occurs in the electron transmission at energies near the Fermi level (EF). It ex-
plains the additional time it takes to transmit an electron through the SWNT/DNA
interface.

Figure 5 illustrates the differential conductance of the system for some selected
armchair nanotubes with different tube diameters as the electrode. We find that, as
the tube radius (R) increases, the conductance of the system considerably increases.
Compared with the most experimentally observed carbon nanotube sizes, there is a
tiny gap in the armchair nanotube types which arises from the curvature effects [40].
Thus, the increase of the tube diameter gives rise to the decrease of the resistance
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Figure 5. The differential conductance (in units of g0) vs. the tube diameter
of electrodes with tSWNT = −3 eV, tc = 0.4 eV and 32 bps for the DNA
molecule in the model structure.

[41] and also the decrease in the gap as 1/R2 [42] and causes a large enhancement
in the conductance of the system.

The calculations of τ(qf ) for the DNA model molecules have been done with
different number of cells. In other words, the behaviour of the interaction time
τ(qf ) has been studied for the DNA molecules of different lengths. As expected
[27], figure 6 shows, when the number of cells, in the presented model for the DNA
increase, the interaction time increases linearly. In this way, the number of cells
has been increased from 15 to 160.

4. Conclusion

Some significant electronic conduction properties of the poly(GACT)–poly(CTGA)
DNA molecule in the SWNT/DNA/SWNT system have been studied using the
methodology described in §2. In the framework of the ladder model, we consider
the DNA molecule with 32 base pairs as a planar molecule containing M cells
and four further sites in each cell, sandwiched between two semi-infinite armchair
single-walled carbon nanotubes as the nanoelectrode. Having calculated the I–V
characteristics, our results suggest a good agreement with the electronic struc-
ture of the DNA in the ladder model. Also, an interaction time which explains
the additional time it takes to transmit an electron through the SWNT/DNA
interface in SWNT/DNA/SWNT structure has been calculated. Our results
show that, in the presented model, the interaction time increases linearly with
the cell number of the DNA. In addition, we find that the increase of the tube
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Figure 6. A plot displaying the linear increase of the interaction time (in
femtosecond) as a function of cell number of the DNA ladder model. Using
the model parameters of table 1, we set tSWNT = −3 eV and tc = 0.4 eV. The
SWNTs are considered to be armchair (5,5).

diameter of the electrodes gives rise to a large enhancement in the conductance of
the system.
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