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Abstract. We consider corrections to scaling within an approximate theory developed
by Mazenko for nonconserved order parameter in the limit of low (d → 1) and high (d →
∞) dimensions. The corrections to scaling considered here follows from the departures
of the initial condition from the scaling morphology. Including corrections to scaling, the
equal time correlation function has the form: C(r, t) = f0(r/L)+L−ωf1(r/L)+· · ·, where L
is a characteristic length scale (i.e. domain size). The correction-to-scaling exponent ω and
the correction-to-scaling functions f1(x) are calculated for both low and high dimensions.
In both dimensions the value of ω is found to be ω = 4 similar to 1D Glauber model and
OJK theory (the theory developed by Ohta, Jasnow and Kawasaki).
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1. Introduction

Phase-ordering kinetics or ‘domain coarsening’ is the subject concerned with the
growth of the order parameter when the system is rapidly quenched from the high
temperature phase (disordered phase) into the region of two- or more-ordered phases
[1]. The scaling theory in phase-ordering kinetics asserts that when all length scales
are scaled by the characteristic length scale L(t) (e.g. domain size), quantities of
interest such as the one-time correlation function C(r, t) become time-independent
in the scaling limit. The characteristic length scale L(t) usually increases according
to a power law, L(t) ∼ tb, where b is the growth exponent or scaling exponent.
This simply means that quantities such as the pair correlation function, C(r, t), are
given by scaling forms [1], e.g.

C(r, t) = f(r/L), (1)
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and the quantity which unites theory, simulations and experiments, the structure
factor S(k, t), which is the Fourier transform of C(r, t), becomes

S(k, t) = Ldg(kL), (2)

where d is the dimensionality of the system, f(r/L) and g(kL) are ‘scaling
functions’.

In fact both the scaling functions and scaling exponents describe only the leading
behaviour in the theory of scaling phenomena. There may be, and usually are,
subdominant corrections, known as corrections to scaling. These corrections cannot
be neglected in practice if more accurate values for exponents and scaling functions
are required.

Here we consider corrections to scaling associated with the departures of the
initial state from the scaling morphology [2,3]. However, there are other sources of
corrections to scaling such as corrections due to the finite size of the ‘defect core’ ξ
(ξ = domain wall thickness when the order parameter is a scalar [1]) and thermal
fluctuations [1,4]. The result for the one-time pair correlation function has the form
[3]

C(r, t) = f0(r/L) + L−ωf1(r/L), (3)

where L is a characteristic length scale (‘domain size’) extracted from the energy,
f0(r/L) is the scaling function, ω is the correction-to-scaling exponent which is in
general non-trivial and f1(r/L) is the correction-to-scaling function.

The paper is organized as follows: The next section introduces the Mazenko
theory with corrections to scaling due to noninitial condition. Section 3 deals with
the calculations for corrections to scaling function and exponent for d → 1. The
corrections to scaling for d → ∞ are considered in §4. Concluding remarks are
given in §5.

2. Mazenko theory with corrections to scaling

A ‘Gaussian closure’ theory (Mazenko theory) proposed by Mazenko [5] following
earlier work by Ohta, Jasnow and Kawasaki (OJK theory) [6] has proved to be
quite useful in the study of coarsening dynamics. For nonconserved scalar fields,
the pair correlation function C(r, t) satisfies the following closed equation [1,5]
within Mazenko Theory:

1
2

∂C

∂t
= ∇2C +

1
πS0(t)

tan
(π

2
C

)
. (4)

The function S0(t) is defined as 〈m(r, t)2〉, where m is an auxiliary Gaussian field
[5]. For the present purposes, however, it is sufficient to note that S0 has dimensions
(length)2. It is convenient to define the coarsening length scale L(t) by S0 = L2/λ,
where λ is a constant whose value is fixed by physical requirements [1,5]. This
definition of L is in accord with previous definitions [1,3,7]. Since initial condi-
tions contain only short-range spatial correlations, the parameter λ is fixed by the
requirement that only exponential decay for large-x is present in C(r, t) [5].
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Writing S0 = L2/λ in (4), setting C(r, t) = f0(r/L)+L−ωf1(r/L)+ · · ·, dL/dt =
1/2L + b/L1+ω + · · ·, and equating leading and next-to-leading powers of L in the
usual way gives the following equations for the functions f0(x) and f1(x) [3]:

f ′′0 +
(

d− 1
x

+
x

4

)
f ′0 +

λ

π
tan

(π

2
f0

)
= 0 (5)

f ′′1 +
(

d− 1
x

+
x

4

)
f ′1 +

λ

2
sec2

(π

2
f0

)
f1 +

ω

4
f1 +

b

2
xf ′0 = 0, (6)

where x = r/L is the scaling variable, C(r, t) → f0(x) (scaling function) in the limit
t → ∞ while f1(x) is the correction to scaling function, b is the constant which
fixes amplitude of f1(x). The correction-to-scaling exponent ω is determined in the
same way as the parameter λ [3].

Equation (5) provides both the scaling function f0(x) and the parameter λ while
solution to (6) gives both the correction-to-scaling function f1(x) and the correction
to scaling exponent ω.

3. Results for low dimensionality

When d → 1, the scaling function f0(x) is not regular (as highlighted in §3.1) at
small-x unless λ → 0 faster than the rate at which d → 1. In this limit we consider
solving eqs (5) and (6) perturbatively in ε = d− 1. That is, we are looking for the
solutions of the form:

f0(x) = u0(x) + εu1(x) + ε2u2(x) + · · · (7)
λ = λ0 + ελ1 + ε2λ2 + · · · (8)
f1(x) = v0(x) + εv1(x) + ε2v2(x) + · · · (9)
ω = ω0 + εω1 + ε2ω2 + · · · . (10)

3.1 Scaling results in the limit d → 1

In order to solve eq. (5), the small-x analysis of f0(x) from (5) is important and is
shown as follows:

f0(x) = 1− x

π

√
2λ

d− 1
+ O(x3) (11)

= 1− x

π

√[
2(λ0 + ελ1 + ε2λ2(x) + · · ·)

ε

]
+ O(x3). (12)

The last equation is obtained by substituting (8) in (11). For f0(x) to be regular
at small-x for d → 1, λ0 = 0 and eq. (11) reduces to
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f0(x) = 1− x

π

√
2λ1 − x

π

λ2√
2λ1

ε + O(ε2). (13)

Comparing (7) and (13) the small-x analysis leads to: u0(x) = 1 − x
π

√
2λ1 and

u1(x) = − x
π

λ2√
2λ1

. Substituting eqs (7) and (8) in (5), and considering the terms of
order O(1) we get

u′′0(x) +
x

4
u′0(x) = 0 (14)

with solution

u0(x) = 1− erf
[

x

2
√

2

]
= erfc

[
x

2
√

2

]
. (15)

The conditions u0(0) = 1 and u′0(0) = − 1
π

√
2λ1 have been employed in (15) above

which also leads to λ1 = π/4. The result for u0(x) is similar to 1D Glauber model
[3,8,9]. We now consider terms of order O(ε) following substitution of (7) and (8)
in (5) which gives

u′′1(x) +
x

4
u′1(x) = R(x) , (16)

with R(x) = −u′0
x − λ1

π tan
(

π
2 u0

)
.

The above differential equation must be solved with initial conditions u1(0) = 0

and u′1(0) = −
√

2
π3 λ2. The solution for (16) follows:

u1(x) = −
√

2
π3

λ2 ×
∫ x

0

exp
(
−y2

8

)
dy

+
∫ x

0

[
exp

(
−y2

8

)
×

∫ y

0

exp
(

z2

8

)
R(z)dz

]
dy. (17)

The parameter λ2 is fixed by the condition that as x →∞, u1(x) → 0. The value
for the parameter λ2 is found to be λ2 = −0.0934. Therefore, we have

λ =
π

4
ε− 0.0934ε2 + · · · . (18)

For d = 2, the estimate λ = 0.692 is very close to the value 0.711 obtained by direct
numerical solution [1,3] of eq. (5). The scaling function is given by

f0(x) = u0(x) + εu1(x), (19)

where u0(x) and u1(x) are given by eqs (15) and (17) respectively. The scaling
functions for d = 1 (exact result) and d = 2 (from eq. (19)) are shown in figure 1.
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Figure 1. Scaling function f0(x): curves from left to right are the exact
results for d = 1 and d = 2.

3.2 Corrections to scaling results in the limit d → 1

The small-x analysis of eq. (6) gives

f1(x) =
1
π

√
2λ

d− 1
b

(8d + 4)
x3 + O(x5) (20)

=
b

12π

√
2λ1 x3 + ε

b

12π

(
λ2√
2λ1

− 2
3

√
2λ1

)
x3 + O(ε2), (21)

from which it follows that for small-x,

v0(x) =
b

12
√

2π
x3 + O(x5) (22)

v1(x) =
b

12
√

2π

(
2λ2

π
− 2

3

)
x3 + O(x5) . (23)

Substituting eqs (7)–(10) in (6), terms of order O(1) leads to

v′′0 +
x

4
v′0 +

ω0

4
v0 +

b

2
xu′0 = 0, (24)

where u′0(x) = − 1√
2π

exp(−x2/8). Writing v0(x) = exp(−x2/8)g(x) and substitut-
ing this in eq. (24) gives

g′′ − x

4
g′ +

(ω0 − 1)
4

g = Bx , (25)

where B = b/
√

8π. What are the boundary conditions on g(x)? Clearly g(0) = 0,
because C(0, t) = 1 is already implemented by u0(0) = 1. Solution to (25) can be
expressed in a series form: g(x) =

∑∞
n=0 gnxn. However, the conditions u0(0) = 1

and v′0(0) = 0 lead to g0 = g1 = g2 = 0 and as a result the series expansion
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for g(x) starts at O(x3). Inserting the series solution g(x) =
∑∞

n=3 gnxn gives
g3 = B/6, and the recurrence relation gn+2 = [a(n + 1− ω0)/(n + 1)(n + 2)]gn for
the higher-order odd coefficients, all even coefficients vanishing. In order that v0(x)
decreases faster than a power-law for large-x, as required on physical grounds for
initial conditions with only short-range correlations, the series expansion for g(x)
must terminate. This gives the condition ω0 = n + 1 = 4, 6, 8, . . .. We conclude
that the leading correction-to-scaling exponent for d → 1 within Mazenko theory
is ω0 = 4 with corresponding correction-to-scaling function

v0(x) =
B

6
x3 exp

(
−x2

8

)
=

b

12
√

2π
x3 exp

(
−x2

8

)
. (26)

The results obtained here for corrections to scaling are similar to the ones we
obtained in 1D Glauber model [3]. This shows that Mazenko theory reduces to 1D
Glauber model in the limit d → 1.

The O(ε) terms from eq. (6) on substituting (7)–(10) leads to

v′′1 +
x

4
v′1 +

ω0

4
v1 = −v′0

x
− λ1

2
sec2

(π

2
u0

)
v0 − ω1

4
v0 − b

2
xu′1. (27)

Since v0 ∝ x3 exp(−x2/8), it is clear that v1 = A1x
α exp(−x2/8) and one has

to determine α while A1 follows from (23). Substituting v1 = A1x
α exp(−x2/8)

leads to α = 3, while consideration of the dominant terms for x → ∞ leads to
ω1 = 1− 2λ1 = 1− π/2. Note here that the observation sec2

(
π
2 u0

) → 1 as x →∞
has been used. The correction to scaling exponent then follows

ω = 4 + ε(1− π/2) + · · · . (28)

For d = 2, the above gives w = 3.429, which is very close to the value 3.884 obtained
through direct numerical solution of Mazenko theory in d = 2 [3]. The correction
to scaling function f1(x) = v0(x) + εv1(x) is given by

f1(x) =
b

12
√

2π
[1− 0.726ε] x3 exp

(
−x2

8

)
. (29)

4. Results for high dimension

In order to make analysis of eq. (4) in the limit d → ∞, we make the following
change of variables: γ(r, t) = sin(π

2 C(r, t)) and apply S0 = L2/λ as before. Then
eq. (4) becomes

1
2

∂γ

∂t
=

d2γ

dr2
+ γ

(dγ/dr)2

(1− γ2)
+

d− 1
r

dγ

dr
+

λ

2L2
γ. (30)

Setting γ(r, t) = γ0(r/L) + L−ωγ1(r/L) + · · ·, dL/dt = 1/2L + b/L1+ω + · · ·, and
equating leading and next-to-leading powers of L in the usual way gives the fol-
lowing equations for the scaling function γ0(x) and correction-to-scaling function
γ1(x):
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γ′′0 +
γ0γ

′
0

1− γ2
0

+
(

d− 1
x

+
x

4

)
γ′0 +

λ

2
γ0 = 0 (31)

γ′′1 +
2γ0γ

′
1γ
′2
0 + γ′20 γ1

1− γ2
0

+
(

d− 1
x

+
x

4

)
γ′1

+
(

λ

2
+

ω

4

)
γ1 +

bx

2
γ′0 = 0. (32)

Since we are interested in the limit d → ∞, we shall consider both eqs (31) and
(32) perturbatively in ε̃ = 1/d. We now let

λ =
1

ε̃λ1 + ε̃2λ2 + · · · =
1

ε̃λ1
− λ2

λ2
1

ε̃ + · · · (33)

γ0(x) = h0(x) + ε̃h1(x) · · · (34)
γ1(x) = p0(x) + ε̃p1(x) · · · (35)
ω = ω0 + ε̃ω1 · · · . (36)

4.1 Scaling results in the limit d →∞

We first consider the scaling equation (31) with substitution of eqs (33) and (34)
by considering terms O(ε̃−1) and later terms of order O(1). Terms of order O(ε̃−1)
leads to h′0

x + h0
2λ1

= 0 with solution

h0(x) = exp
[
− x2

4λ1

]
. (37)

The condition h0(0) = 1 has been used. Since for large-x, γ0 ≈ exp[−x2/8] then
λ1 = 2. For the terms of order O(1) we have

h′1
x

+
h1

2λ1
+

[
x2

4λ2
1

(
1− λ1

2

)
− λ2

2λ1
+

x2h2
0

4λ2
1(1− h2

0)

]
h0 = 0 . (38)

Since h1 decays to zero for large-x, then λ1 = 2 and λ2 = 0. The solution to eq.
(38) is then given by

h1(x) = −h0

16
×

∫ x

0

y3

[exp (y2

4 )− 1]
dy, (39)

with condition h1(0) = 0. The solution to eq. (31) follows

γ0 = exp
(
−x2

8

)
×

[
1− 1

16d
×

∫ x

0

y3

[exp (y2

4 )− 1]
dy

]
(40)

with
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Figure 2. Scaling function f0(x): curves from left to right are the results for
d = 3 and the exact results for d = ∞

λ =
d

2

[
1 + 0

(
1
d2

)]
. (41)

The scaling function f0(x) is then given by

f0(x) =
2
π

sin−1 (γ0(x)) . (42)

For d = ∞ we recover the OJK result [6]. This is in agreement with earlier con-
clusions that coarsening dynamics reduces to OJK result in the limit of d → ∞
[5,10,11]. The scaling functions for d = ∞ (exact result) and d = 3 (from (42)) are
shown in figure 2.

4.2 Correction to scaling results in the limit d →∞

The next step is to consider corrections to scaling with the help of eq. (32) with
substitution of eqs (33)–(36). Terms of order O(ε̃−1) leads to p′0

x + p0
2λ1

= 0 with a
solution p0(x) = 0 (the condition p0(0) = 0) has been used. We now consider the
next terms of order O(1) which leads to

p′1
x

+
p1

2λ1
+

b

2
xh′0 = 0 . (43)

Setting p1 = qh0 and substituting it in (43) gives q = bx4/16λ1. Hence the solution
to (43) is given by

p1(x) =
bx4

16λ1
exp

[
− x2

4λ1

]
=

bx4

32
exp

[
−x2

8

]
. (44)

The next step is to consider terms of order O(ε̃) which gives the following equation:

p′2 +
xp2

4
= M(x), (45)
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Figure 3. The correction to scaling function f1(x) for d = 3.

where

M(x) = −xp′′1 −
(

x2

4
− 1

)
p′1 −

ω0

4
xp1 − bx

2
h′1 −

2xh′20 h0p1

1− h2
0

. (46)

In order to extract the value of ω0 we consider the large-x analysis of (45). In this
limit the above equation reduces to (as the last two terms in (45) are subdominant)

p′2 +
xp2

4
= −xp′′1 −

(
x2

4
− 1

)
p′1 −

ω0

4
xp1, (47)

whose solution is (with condition p2(0) = 0)

p2(x) = exp
(
−x2

8

) ∫ x

0

exp(y2/8)

×
[
−yp′′1(y)−

(
y2

4
− 1

)
p′1(y)− ω0

4
yp1(y)

]
dy. (48)

The value of ω0 is found from the above equation with a physical condition that
p2(x) decays to 0 faster than any other possible p2(x) with another value of ω0.
The value ω0 = 4 satisfies this requirement. The solution to (45) follows:

p2(x) = exp
(
−x2

8

) ∫ x

0

exp
(
y2/8

)
M(y)dy, (49)

with ω0 = 4. The correction to scaling function f1(x) in the limit d →∞ is

f1(x) =
2

π
√

1− γ2
0

× [
ε̃p1(x) + ε̃2p2(x)

]
. (50)

The correction to scaling function f1(x) is shown in figure 3 for d = 3 using eq.
(50). The results for f1(x) and ω0 reproduce the corrections to scaling results for
OJK [3]. This reinstate the conclusions drawn earlier that OJK is recovered from
coarsening dynamical models in the limit of large-d [5,10,11]. In order to find ω1

one has to consider terms beyond O(ε̃2) and the equations become intractable as
the number of parameters to be fixed increases and as a result it is not possible to
find ω1 in the large-d limit within the current study.
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5. Concluding remarks

The understanding of corrections to scaling is critical in the analysis of data from
experiments and simulations. We have shown that correction-to-scaling function
f1(x) and correction-to-scaling exponent ω interpolate well between d = 1 and
d = ∞ as known results are recovered: 1D Glauber model as d → 1 and OJK result
as d →∞. Our results further reinstate the conclusions drawn earlier that OJK is
exact in the limit d →∞ [10–12].

The parameter λ is related to autocorrelation exponent λ̄ introduced by Fisher
and Huse [13] and later shown to be nontrivial by Newman and Bray [14]. The
relation is as follows [15]: λ = d−λ̄. We also note the fact that similar to OJK theory
in coarsening dynamics, Mazenko theory utilizes the Gaussian field. In future, we
hope to carry out the current study beyond the Gaussian field approximation.
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