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Abstract. The stability of various atomic configurations containing a self-interstitial
atom (SIA) in a model representing Mo has been investigated using the modified analytical
embedded atom method (MAEAM). The lattice relaxations are treated with the molecular
dynamics (MD) simulation at absolute zero of temperature. Six relatively stable self-
interstitial configurations and formation energies have been described and calculated. The
results indicate that the [1 1 1] dumbbell interstitial S111 has the lowest formation energy,
and in ascending order, the sequence of the configurations is predicted to be S111, C,
S110, T, S001 and O. From relaxed displacement field up to the fifth-NN atoms of six
configurations, we know that the relaxed displacements depend not only on separation
distances of the NN atoms from the defect centre but also strongly on the direction of the
connected line between the NN atoms and the defect centre. The equilibrium distances
between two nearest atoms in the core of the S111, C, S110, T, S001 and O configurations
are 0.72a, 0.72a, 0.71a, 0.72a, 0.70a and 0.70a, respectively.
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molecular dynamics.
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1. Introduction

In order to design and obtain desired properties of modern materials, a thorough
understanding of the material microstructure is necessary. Although the rapid im-
provement and development of experimental tools in recent years, e.g., the scanning
tunneling microscope (STM), the field ion microscope (FIM), the high-resolution
transmission electron microscope (HRTEM), etc., have significantly improved the
prospects for directly observing the structures of crystal defects at atomic level,
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many details of these structures remain beyond the scope of these tools [1]. Fur-
thermore, it is not easy to experimentally determine precisely the atomic quantities
such as the formation energy of an interstitial or a single vacancy, since these quanti-
ties are affected by the local environment (for instance, the impurities) of the defect
which is very difficult to probe [2]. Therefore, atomistic simulations based on realis-
tic physical models are becoming powerful supplement to the current experimental
methods.

Despite a great body of existing work, there is still uncertainty in understand-
ing the structure and basic properties of SIA defects in bcc molybdenum. For
examples, Xu and Moriarty [1], using multi-ion interatomic potentials derived from
first-principles generalized pseudopotential theory, predicted the [1 1 0] dumbbell as
the most stable SIA configuration in Mo, while Han et al [3] and Nguyen-Manh
et al [4], using ab initio calculation, found that the [1 1 1] configuration had the
lowest formation energy. Thus it is necessary to investigate the issue with other
theoretical approaches. In this paper, six self-interstitial configurations T, O, C,
S001, S110 and S111 in Mo have been investigated by the modified analytical embed-
ded atom method (MAEAM), which was developed by Zhang et al [5] from initial
EAM [6–8] and AEAM [9–11] by adding a modified term to describe the energy
deviation from the linear superposition of atomic electronic density in crystal and
has been used successfully in our previous paper to investigate the interface [12,13],
grain boundary [14,15], surface adsorption [16] and vacancies [17–19]. The results
that the formation energy of the self-interstitial configuration increases for S111, C,
S110, T, S001 and O successively are consistent with ab initio calculation [3,4]. Fur-
thermore, the equilibrium distances between two nearest atoms in the core of the
S111, C, S110, T, S001 and O configurations are 0.72a, 0.72a, 0.71a, 0.72a, 0.70a and
0.70a, respectively. The detailed relaxed displacement fields up to the fifth nearest-
neighbour (NN) atoms show that the relaxed displacements depend not only on
separation distances of the NN atoms from the defect centre but also strongly on
the direction of the connected line between the NN atoms and the defect centre.

2. Methodology

2.1 MAEAM

In MAEAM, the total energy Etotal of a crystal is expressed as [5]

Etotal =
∑

i

F (ρi) +
1
2

∑

i

∑

j(6=i)

φ(rij) +
∑

i

M(Pi), (1)

ρi =
∑

j(6=i)

f(rij), (2)

Pi =
∑

j( 6=i)

f2(rij), (3)
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where F (ρi) is the energy to embed an atom in site i with electron density ρi,
which is given by a linear superposition of the spherical averaged atomic electron
density of other atoms f(rij), rij is the separation distance of atom j from atom i,
φ(rij) is the pair potential between atoms i and j, and M(Pi) is the modified term,
which describes the energy deviation from the linear superposition. Embedding
function F (ρi), pair potential φ(rij), modified term M(Pi) and atomic electron
density f(rij) take the following forms [20,21]:

F (ρi) = −F0

[
1− n ln

(
ρi

ρe

)](
ρi

ρe

)n

, (4)

φ(rij) = k0 + k1

(
rij

r1e

)2

+ k2

(
rij

r1e

)4

+ k3

(
r1e

rij

)12

, (rij ≤ r2e), (5)

M(Pi) = α

(
Pi

Pe
− 1

)2

exp

[
−

(
Pi

Pe
− 1

)2
]

, (6)

f(rij) = fe

(
r1e

rij

)6

, (7)

where the subscript e denotes equilibrium state and r1e is the first nearest-neighbour
distance at equilibrium. In this paper, the atomic electron density at equilibrium
state fe is chosen as [20]

fe =
(

Ec − E1f

Ω

)3/5

, (8)

where Ω = a3/2 is the atomic volume of a metal with bcc structure.
The seven parameters F0, n, k0, k1, k2, k3 and α in eqs (4)–(6) can be determined

by fitting the cohesion energy Ec, the mono-vacancy formation energy E1f (the
definition of E1f is that E1f = Ev

t − (Et − Ec), where Ev
t and Et are the total

energies of the lattices with and without a vacancy and Ec is the cohesion energy
and compensates for the missing atom), the lattice constant a, and elastic constants
C11, C12 and C44. According to the principle that the energy versus separation
distance curve fits the Rose equation [22], we get

n =

√
Ω(C11 + 2C12)(C11 − C12)

(216E1fC44)
, (9)

α =
Ω(C12 − C44)

32
− n2F0

8
, (10)

F0 = Ec − E1f . (11)
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The parameters of the potential energy k0, k1, k2 and k3 can be calculated with
the following formulae for bcc metals [23]:

k0 = −E1f

7
− Ω(−57111C11 + 57111C12 + 51519C44)

471800
, (12)

k1 =
Ω(−52563C11 + 52563C12 + 33327C44)

269600
, (13)

k2 =
Ω(147456C11 − 147456C12 − 59049C44)

1887200
, (14)

k3 =
1536Ω(−C11 + C12 + 4C44)

412825
. (15)

According to Zhang and Ouyang, the pair-potential φ(rij) represented by eq.
(5) is useable only if the separated distance between atoms is shorter than the
second neighbour distance r2e and should be substituted by the following cubic
spline function (termed as a cut-off potential) [20]

φ(rij) = l0 + l1

(
rij

r2e
− 1

)
+ l2

(
rij

r2e
− 1

)2

+ l3

(
rij

r2e
− 1

)3

,

(r2e < rij ≤ rc). (16)

Four parameters l0, l1, l2, l3 and cut-off radius rc are taken as

l0 = k0 + k1s
2 + k2s

4 + k3s
−12, (17)

l1 = 2k1s
2 + 4k2s

4 − 12k3s
−12, (18)

l2 = − 2l1
(γ − 1)

− 3l0
(γ − 1)2

, (19)

l3 =
l1

(γ − 1)2
+

2l0
(γ − 1)3

, (20)

rc = r2e + 0.75(r3e − r2e), (21)

where r2e and r3e are the second and third neighbour distances at equilibrium,
s = r2e/r1e and γ = rc/r2e.

Inserting physical parameters such as lattice constant a [23], cohesion energy Ec

[24], mono-vacancy formation energy E1f [25] and elastic constants C11, C12 and
C44 [26] (all these are listed in table 1 for convenience) into eqs (8)–(15) and then
into eqs (17)–(20), we can obtain the model parameters fe, F0, n, α, ki and li
(i = 0, 1, 2, 3) for Mo, which are listed in table 2.
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Table 1. The input physical parameters for Mo.

a (Å) Ec (eV) E1f (eV) C11 (eV/nm3) C12 (eV/nm3) C44 (eV/nm3)

3.1468 6.82 3.10 2.87 1.05 0.69

2.2 Computational procedure

A system which consists of an outer region and an inner region containing a SIA
at the centre is used in the simulation. The atoms in the outer region are assumed
to be fixed at their perfect lattice sites and are used as boundary to ensure that
each atom in the simulation region has a complete set of neighbours within the
range of interatomic potential. The atoms in the inner simulation region are fully
relaxed till the minimum energy is reached. The lattice relaxations resulted from
the existence of the SIA are treated with the MD simulation [20,21]. The force
applied to the ith atom from the other atoms is calculated by

fα
i = − ∂Ei

∂rα
ij

= −

F ′(ρi)

∑

j(6=i)

f ′(rij)
rα
ij

rij
+

1
2

∑

j(6=i)

φ′(rij)
rα
ij

rij

+2M ′(Pi)
∑

j(6=i)

f(rij)f ′(rij)
rα
ij

rij


 , (22)

where the superscript α (denotes x, y or z) in fα
i and rα

ij represents the αth com-
ponent of the force (fi) and the separation distance (rij) of atom j from atom i.
Ei = F (ρi) + 1

2

∑
j(6=i) φ(rij) + M(Pi) is the energy contribution from atom i and

eq. (1) becomes

Etotal =
∑

i

Ei. (23)

The interstitial formation process is defined here as the creation of an interstitial
structure from a corresponding perfect crystal lattice having the same number of
normal atoms [27]. The relaxed SIA formation energy Ef

I is defined as [28]

Ef
I = EI

t − (Et + Ec), (24)

where EI
t and Et are the energies of the relaxed lattices with and without a SIA

and Ec is the cohesion energy and counteracts the adding interstitial atom.

3. Results and discussion

3.1 Unrelaxed

An interstitial atom can position in a crystal in two ways: (1) normal atoms at
their perfect lattice sites and the interstitial atom lying in interstitial position of
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Figure 1. A single SIA or one of the dumbbell atoms assumed to move on
the representative symmetrical plane (0 0 1) or (1 1̄ 0) of bcc crystal.

the coordination polyhedrons of the crystallite, (2) dumbbell interstitial, that is,
two atoms are symmetrically split in one direction sharing a vacant normal lattice
site. From the analysis of the resultant force, we know that these interstitial de-
fects should be distributed on the symmetrical planes of the crystal, that is {1 0 0}
and {1 1 0} for cubic structure. As is shown in figure 1, a single SIA or one of
the dumbbell atoms with position coordinate (x, y, 0) or (x, y ≡ x, z) is assumed
to move at intervals of 0.05 Å on the representation plane (0 0 1) or (1 1̄ 0), and
at each position the interstitial energy is calculated, The minimum values of the
energy and the corresponding positional coordinates are listed in table 3 and shown
schematically in figure 2.

We can see that these relatively stable self-interstitial positions are tetrahedron,
octahedron and crowdion single interstitial sites, and [0 0 1], [1 1 0] and [1 1 1] dumb-
bell interstitial sites. These sites locate either in a large ‘open space’ or at the higher
symmetry element positions of the lattice. To describe conveniently, we abbreviate
these six positions as T, O, C, S001, S110 and S111, respectively. The crowdion is
lying in the closest packed row of the lattice and a [h k l] dumbbell (or split) in-
terstitial lies in a position in which the interstitial and another atom are arranged
symmetrically in the [h k l] direction sharing and slightly displaced from a vacant
normal lattice site. Johnson et al [31] have also demonstrated its stability in a lat-
tice model rather similar to ours. The distances of the T, O and C SIA separated
from their first-NN atoms are 0.56a, 0.50a and 0.43a and the lengths of the S001,
S110 and S111 dumbbells are 0.68a, 0.65a and 0.59a, respectively.

3.2 Relaxed

The calculated interstitial formation energies after relaxation are listed in table 3
along with ab initio calculation data [3,4] for comparison. The calculated inter-
stitial formation energies are generally lower than the ab initio calculations and
may be resulted from simplifications of the last two terms on the right-hand side
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Figure 2. Schematic figures of the six relatively stable self-interstitial con-
figurations for Mo.

of total energy expression (1), i.e., pair potential φ(rij) and the modified term
M(Pi). The pair-potential φ(rij) between atoms i and j is not included while
the separation distances of atoms j from atom i are larger than the cut-off radius
rc = r2e + 0.75(r3e − r2e) selected in eq. (21). The modified term M(Pi) is added
to describe the energy contribution from a non-linear superposition of the spheri-
cal averaged atomic electron density of other atoms f(rij). A complete form of a
non-linear superposition of the spherical averaged atomic electron density of other
atoms f(rij) should be Pi =

∑
j 6=i[f

2(rij) + f3(rij) + · · ·]. However, as presented
in eq. (3), Pi =

∑
j(6=i) f2(rij), only the second-order term is considered and the

terms corresponding to the higher-order have been neglected. If a relatively larger
cut-off radius and more higher-order terms are used in eqs (21) and (3), the higher
interstitial formation energies can be obtained with the MAEAM interatomic po-
tentials. Although the present results are lower than the ab initio results, as shown
in figure 3 for the formation energies of the six SIA configurations relative to the
lowest-energy configuration S111, the sequences of the six configurations in energetic
order are identical. From the minimization of the formation energy, we know that
the preferred interstitial configurations are S111, C, S110, T, S001 and O successively.

The formation of interstitial defect will result in a rearrangement of the matrix
atoms in the vicinity of the interstitial. The lattice distortion is determined by an
iteration process minimizing the energy. The calculated equilibrium positions of the
SIA for the six interstitial configurations are also given in table 3. The equilibrium
distances between two nearest atoms in the core of the S111, C, S110, T, S001 and
O configurations are 0.72a, 0.72a, 0.71a, 0.72a, 0.70a and 0.70a respectively. The
displacement fields around the SIA up to the fifth-NN atoms are listed in table 4 for
T, O, C, S111, S110 and S001. For the single interstitials and the dumbbells, the dis-
tribution of the same NN atoms is symmetrical about the centre of the interstitial
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Figure 3. Formation energies of the six SIA configurations relative to the
S111.

defects. So only the displacements of one atom on the symmetrical position are
given. The negative values refer a motion along negative direction of axis. It is
noted that the displacements of NN atoms to a SIA are very large compared to
those to a vacancy in ref. [1]. This is because adding a SIA into normal matrix
will result in a large decrease in interatomic distance and thus a large increase in
the acting force, while removing an atom from normal matrix will result in a slight
change in the acting force.

Figure 4 shows the schematic picture of the relaxed displacements lying on the
(1 1̄ 0) plane up to the fifth-NN atoms of the SIA O and C sites, and core of the
dumbbell S111, S110 and S001. The gray and black balls represent normal matrix
Mo atoms and the SIA, respectively. The arrows represent the directions and
magnitudes (enlarged different times) of the movement of these atoms. The third-
and fifth-NN atoms are absent for SIA O and C sites, respectively, since they do
not lie on the (1 1̄ 0) plane.

From table 4 and figure 4, we can see that the relaxed displacements depend not
only on separation distances of the NN atoms from the SIA but also strongly on
the direction of the connected line between the NN atoms and the self-interstitial
centre. For the occupying high-symmetry O site, each atom in the vicinity of SIA
moves approximately along the connected line between the atom and the SIA. Up
to the fifth-NN atoms, the movements are outward the SIA, except for the third-NN
atoms moving toward the SIA. The further the NN atoms from the O site SIA are,
the smaller the relaxed displacements are. A relatively large relaxed displacements
occur for atoms aligned along the [0 0 1] direction containing SIA. Similar relaxed
configurations are obtained for C and S111, the deformation is largely confined to a
single string of atoms running in the [1 1 1] direction. The same result was reported
in ref. [4]. The relatively larger displacements occurred for atoms lying on the
[1 1 1] string are given in italics for convenience in table 4. Similar symmetry and
relaxed structures for C and S111 result in a nearly equal formation energy as can be
seen in figure 3. For S110 and S001, the relaxed displacement fields of the NN atoms
are symmetric about the dumbbell. Up to the fifth-NN atoms, the movements are
outward except the second-NN atoms of S110 moving inward.
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Figure 4. The relaxed atomic displacements lying on (1 1̄ 0) plane in the
vicinity of the SIA. The gray and black balls represent normal matrix Mo
atoms and the SIA, respectively. The arrows represent the displacement di-
rections and magnitudes (enlarged three and six times for the 1st NN atoms
and the further NN atoms in O, S110 and S001, two and eight times for the
atoms in and out of the [1 1 1] string respectively in C and S111).

4. Conclusions

This paper has mainly been concerned with the stability of various atomic config-
urations containing a SIA in molybdenum. There are several points of interest to
mention. First, the [1 1 1] dumbbell interstitial has the lowest formation energy, and
in ascending order, the sequence of configurations is predicted to be S111, C, S110,
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Table 4. The displacement field around the SIA. ∆x, ∆y and ∆z rep-
resent the relaxed displacement along x-, y- and z-axes respectively,
∆d =

p
(∆x)2 + (∆y)2 + (∆z)2 is the total relaxed displacement.

Nearest
Interstitial neigh- Initial
configuration bours positions ∆x(a) ∆y(a) ∆z(a) ∆d(a)

T 1st (0,0,0)a −0.14516 −0.07868 0.00000 0.16512
(0.5,0.25,0)a 2nd (1,1,0)a −0.01583 0.00616 0.00000 0.01697

3rd (0,0,1)a 0.00168 −0.01036 −0.02123 0.02367

4th
(0,1,1)a −0.02758 0.03168 0.03028 0.05180

(0,−1,0)a −0.01459 −0.01856 0.00000 0.02361
5th (−1,0,0)a −0.02682 −0.00076 0.00000 0.02682

O 1st (0.5,0.5,0.5)a 0.00000 0.00000 0.20163 0.20163
(0.5,0.5,0)a 2nd (0,0,0)a −0.03384 −0.03384 0.00000 0.04786

3rd (0.5,1.5,−0.5)a 0.00000 −0.02965 0.00184 0.02971
4th (0,0,−1)a −0.02078 −0.02078 −0.01726 0.03410

5th
(1.5,1.5,0.5)a 0.00960 0.00960 0.00483 0.01440
(0.5,0.5,1.5)a 0.00000 0.00000 0.04230 0.04230

C 1st (0.5,0.5,0.5)a 0.16420 0.16420 0.16420 0.28442
(0.25,0.25,0.25)a 2nd (0,0,a)a 0.01926 0.01926 0.02456 0.03667

3rd (−0.5,−0.5,0.5)a 0.01160 0.01160 0.01776 0.02418

4th
(−0.5,−0.5,−0.5)a −0.08984 −0.08984 −0.08984 0.15562

(0.5,0.5,1.5)a 0.01700 0.01700 0.03124 0.03941
5th (−1,0,1)a −0.00680 −0.00067 0.00594 0.00906

S111
1st

(0.5,0.5,0.5)a 0.12565 0.12565 0.12565 0.21765
±(0.17,0.17,0.17)a (0.5,0.5,−0.5)a −0.01719 −0.01719 −0.02066 0.03191

2nd (0,0,1)a 0.01776 0.01776 0.02939 0.03864

3rd
(1,1,0)a −0.00756 −0.00756 −0.01484 0.01830

(−1,1,0)a −0.00620 0.00620 0.00000 0.00877

4th

(0.5,0.5,1.5)a 0.01459 0.01459 0.02708 0.03403
(0.5,0.5,−1.5)a −0.00302 −0.00302 −0.00667 0.00791
(0.5,−0.5,1.5)a 0.00124 −0.00562 0.00696 0.00903

5th
(1,1,1)a 0.06178 0.06178 0.06178 0.10700

(1,1,−1)a −0.00270 −0.00270 −0.00410 0.00559

S110 1st (0.5,0.5,0.5)a 0.05421 0.05421 0.10096 0.12676
±(0.23,0.23,0)a (0.5,−0.5,0.5)a −0.00922 0.00922 −0.01436 0.01938

2nd
(0,0,1)a 0.00000 0.00000 −0.02914 0.02914
(1,0,0)a 0.04080 0.00982 0.00000 0.04198

3rd

(−1,−1,0)a 0.01640 0.01640 0.00000 0.02320
(−1,0,−1)a −0.00725 0.01046 −0.00296 0.01306
(−1,1,0)a 0.00000 0.00000 0.00000 0.00000

4th

(0.5,0.5,1.5)a 0.00064 0.00064 0.01706 0.01834
(−0.5,1.5,0.5)a −0.00365 0.00588 0.00105 0.00699
(0.5,−0.5,1.5)a −0.00369 0.00369 −0.00003 0.00521

5th
(1,1,1)a 0.02603 0.02603 0.02717 0.04576

(−1,1,1)a 0.00064 −0.00064 −0.00210 0.00229

contd...
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Table 4. Contd...

Interstitial Nearest Initial
configuration neighbours positions ∆x(a) ∆y(a) ∆z(a) ∆d(a)

S001 1st (0.5,0.5,0.5)a 0.03178 0.03178 0.01503 0.04738
±(0,0,0.34)a

2nd
(0,0,1)a 0.00000 0.00000 0.09724 0.09724
(1,0,0)a −0.03810 0.00000 0.00000 0.03810

3rd
(0,1,1)a 0.00000 −0.01455 −0.00191 0.01468
(1,1,0)a 0.01071 0.01071 0.00000 0.01516

4th
(0.5,0.5,1.5)a 0.01179 0.01179 0.01363 0.02155
(1.5,0.5,0.5)a 0.00439 −0.00324 −0.00153 0.00566

5th (1,1,1a)a 0.01030 0.01030 0.00664 0.01602

T, S001 and O. This is in agreement with the ab initio calculations. Second, the
equilibrium distances between two nearest atoms in the core of the S111, C, S110,
T, S001 and O configurations are 0.72a, 0.72a, 0.71a, 0.72a, 0.70a and 0.70a respec-
tively. Finally, the relaxed displacements depend not only on separation distances
of the NN atoms from the SIA but also strongly on the direction of the connected
line between the NN atoms and the self-interstitial centre.
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