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Abstract. We deal with the difficulties claimed by the author of [Ann. Phys. 206, 90
(1991)] while solving the Schrödinger equation for the ground states of two-dimensional
anharmonic potentials. It is shown that the ground state energy eigenvalues and eigen-
functions for the coupled quadratic and quartic potentials can be obtained by making
some simple assumptions. Expressions for the energy eigenvalues and the eigenfunctions
for the first and second excited states of these systems are also obtained.
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1. Introduction

The study of exactly solvable real potentials has generated a lot of interest since
the early development of quantum mechanics. The exact analytic expressions for
the eigenvalues, the eigenfunctions and the scattering matrices are always desirable
to explore the detailed properties of dynamical systems. The exact solutions of
the Schrödinger wave equation (SE) are possible only for few choices of potentials.
Therefore, approximation methods are often used to obtain solutions. The solu-
tion of the SE becomes even more difficult for time-dependent potentials in higher
dimensions along with higher-order anharmonicities [1,2].

There exist several methods for solving the SE for dynamical systems. However,
a technique known as the eigenfunction ansatz method has been explored for solving
the SE for ground and excited state energies for a variety of potentials [3–9]. The
same method has also been successfully used to obtain the eigenvalue spectra of
a number of non-Hermitian complex (including PT -symmetric forms) potentials
[10–12]. In [6,7], it has been pointed out that the eigenfunction ansatz method does

647



Ram Mehar Singh, Fakir Chand and S C Mishra

not provide any close form solutions for the two-dimensional coupled quadratic and
quartic potentials. Further, it is also claimed that these systems are only solvable
with some inverse/cross terms.

In this paper, we address the issues of [6,7] and show that, with some simple
assumptions, the SE for two-dimensional coupled quadratic and quartic potentials
is solvable without any inverse/cross terms not only for the ground state but also
for the higher excited states.

The study of such potentials may be of interest in several physical applications,
particularly in the fields of fibre optics, quantum chemistry etc. [6].

The organization of the paper is as follows: In §2, a brief description of the
eigenfunction ansatz method is presented. In §3, we look into the difficulties of
[6,7] and obtain the expressions for the ground state energy eigenvalues and eigen-
functions for the two-dimensional coupled quadratic and quartic potentials. The
first and second excited state solutions for the same systems are obtained in §§4
and 5 respectively. Finally, the concluding remarks are presented in §6.

2. The method

Here we describe the essential steps of the eigenfunction ansatz method to find the
solutions of the SE for two-dimensional systems. The SE (for ~ = m = 1) is written
as

∂2ψ

∂x2
+

∂2ψ

∂y2
+ 2(E − V (x, y))ψ(x, y) = 0. (1)

Let us make the following ansatz for the eigenfunction:

ψ(x, y) = φ(x, y) exp[g(x, y)]. (2)

From eqs (1) and (2), we obtain

gxx + gyy + (gx)2 + (gy)2 + 2(E − V )

+
1
φ

(2φxgx + 2φygy + φxx + φyy) = 0, (3)

where the subscripts to g and φ indicate the differentiation with respect to the
variables x and y.

From the structure of the above equation it is clear that if the functional forms
of g and φ are known for a given system then rationalization of eq. (3) would
directly provide the energy eigenvalue and the corresponding eigenfunction will be
provided by eq. (2). For the ground state solutions the function φ(x, y) is taken as
a constant.

Therefore, for the ground state solutions, eq. (3) reduces to

gxx + gyy + (gx)2 + (gy)2 + 2(E − V ) = 0. (4)

In what follows we find the ground state solutions for the two-dimensional coupled
quadratic and quartic potentials.
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3. The ground state solutions

Case 1. Consider the following two-dimensional coupled quadratic potential

V (x, y) = a20x
2 + a02y

2 + a11xy, (5)

where the coupling parameters a20, a02 and a11 are assumed to be constants. For
system (5), the ansatz for function g(x, y) can be taken as

g(x, y) = α20x
2 + α02y

2 + α11xy, (6)

which is the same as in [6]. Combination of eqs (4)–(6) and rationalization of the
resulting expression lead to the following set of equations:

E = −(α02 + α20), (7a)

4α2
20 + α2

11 = 2a20, (7b)

4α2
02 + α2

11 = 2a02, (7c)

2(α20 + α02)α11 = a11. (7d)

The solutions of eqs (7b)–(7d) would directly provide the energy eigenvalue and
the eigenfunction of the system. The solutions of these equations are not possible
as mentioned in [6,7]. However, with some plausible choices of the parameters α02,
α20 and α11, it is possible to solve the above equations.

Therefore, to obtain the solutions of eqs (7b)–(7d), one can make a number of
choices among the parameters α02, α20 and α11 and can obtain expressions for E
and ψ for a given potential. However, here we choose α02 = α20 because of the fact
that under this particular choice one can easily reproduce the well-known relations
of eigenvalue and eigenfunction for a two-dimensional uncoupled (for a11 = 0)
simple harmonic oscillator from the general relations of the coupled system.

Thus for this particular choice, the solutions of α02, α20 and α11 in terms of
potential parameters are written as

α20 = α02 = −1
2

√
a20 +

√
a2
20 − a2

11/4, (8a)

α11 = −
√

a20 −
√

a2
20 − a2

11/4. (8b)

Here negative signs in the above solutions are retained to keep energy eigenvalue
positive.

The choice α20 = α02 gives a constraint on the potential coupling parameters,
i.e., a20 = a02.

Now the energy eigenvalue is obtained from eq. (7a) as

E =

√
a20 +

√
a2
20 − a2

11/4, (9)

and the corresponding eigenfunction is given as
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ψ(x, y) = N exp
[
− 1

2

√
a20 +

√
a2
20 − a2

11/4 (x2 + y2)

−
√

a20 −
√

a2
20 − a2

11/4 xy

]
. (10)

The normalization constant N is determined from the condition∫∞
−∞

∫∞
−∞ |ψ(x, y)|2dxdy = 1. For the present case, it is given by N =

√√
A2−B2

π ,

where A =
√

a20 +
√

a2
20 − a2

11/4 and B =
√

a20 −
√

a2
20 − a2

11/4. Note that the
inequality a11 < 2a20 must hold for a real E and real and nonzero N .

Case 2. Next, we consider a two-dimensional coupled quartic potential given by

V (x, y) = a10x + a01y + a20x
2 + a02y

2 + a11xy + a30x
3

+a03y
3 + a12xy2 + a21x

2y + a22x
2y2 + a31x

3y

+a13xy3 + a40x
4 + a04y

4, (11)

where the parameters aij are constants.
For this system the ansatz for the function g(x, y) is considered as

g(x, y) = α20x
2 + α02y

2 + α11xy + α12xy2 + α21x
2y

+α30x
3 + α03y

3. (12)

For the sake of simplicity, we have not considered linear terms like α10x + α01y in
g(x, y) which makes a difference between the present form of g(x, y) and that given
in ref. [6]. Inserting eqs (11) and (12) in eq. (4) and then rationalizing, we get the
following set of equations:

E = −(α02 + α20), (13a)

3α30 + α12 = a10, (13b)

3α03 + α21 = a01, (13c)

4α2
20 + α2

11 = 2a20, (13d)

4α2
02 + α2

11 = 2a02, (13e)

2(α20α11 + α02α11) = a11, (13f)

4α20α21 + 3α11α30 + 2α02α21 + 2α11α12 = a21, (13g)

4α02α12 + 3α11α03 + 2α20α12 + 2α11α21 = a12, (13h)

6α20α30 + 2α11α21 = a30, (13i)

6α02α03 + 2α11α12 = a03, (13j)

6α21α30 + 2α12α21 = a31, (13k)

6α12α03 + 2α12α21 = a13, (13l)
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2α2
21 + 2α2

12 + 3α12α30 + 3α21α03 = a22, (13m)

9α2
30 + α2

21 = 2a40, (13n)

9α2
03 + α2

12 = 2a04. (13o)

Again, the solutions for seven unknown parameters αij are not easy. However, some
simple assumptions for the parameters αij make this task possible.

First, we choose α20 = α02 as earlier. For this choice, eqs (13d)–(13f) immediately
lead to

α20 = α02 = −1
2

√
a20 +

√
a2
20 − a2

11/4, (14a)

α11 = −
√

a20 −
√

a2
20 − a2

11/4, (14b)

and a constraining relation a02 = a20.
Secondly, choosing α21 = 3α30 and α12 = 3α03, we obtain the following solutions

of eqs (13n) and (13o):

α30 = −1
3
√

a40, (15a)

α21 = −√a40, (15b)

α03 = −1
3
√

a04, (15c)

α12 = −√a04. (15d)

Since only five equations are utilized for the solutions of αij , the remaining equa-
tions, (13b), (13c) and (13g)–(13m) will provide nine constraining relations among
potential parameters aij .

Finally the energy eigenvalue is written from eq. (13a) as

E =

√
a20 +

√
a2
20 − a2

11/4, (16)

and the eigenfunction is given by

φ(x, y) = N exp
[
− 1

2

√
a20 +

√
a2
20 − a2

11/4(x2 + y2)

−
√

a20 −
√

a2
20 − a2

11/4xy

−1
3
√

a40(x3 + 3x2y)− 1
3
√

a04(y3 + 3xy2)
]
. (17)

4. The first excited state solution

In this section, we solve the SE to obtain the energy eigenvalues and eigenfunctions
for the first excited state of the two-dimensional quadratic and quartic potentials.
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Case 1. For the quadratic potential, eq. (5), we assume the same form of g(x, y)
as given in eq. (6). However the form of φ(x, y) is assumed as

φ(x, y) = α1x + β1y + γ1, (18)

where α1, β1 and γ1 are considered as real constants.
Now using eqs (5), (6) and (18) in eq. (3) and choosing α1 = −β1 and γ1 = 0,

we get a set of four equations, out of which three are same as eqs (7b)–(7d) and
the fourth equation is given as

E1 = −4α20 + α11. (19)

The solutions for the wave function parameters α20, α02 and α11 are the same as
obtained in eqs (8a) and (8b).

Hence the energy eigenvalue for the first excited state is computed from eq. (19)
as

E1 = 2

√
a20 +

√
a2
20 − a2

11/4−
√

a20 −
√

a2
20 − a2

11/4, (20)

and the corresponding eigenfunction becomes

ψ1(x, y) = Nα1(x− y) exp
[
− 1

2

√
a20 +

√
a2
20 − a2

11/4(x2 + y2)

−
√

a20 −
√

a2
20 − a2

11/4xy

]
. (21)

The normalization constant is given as N =
√

(A−B)
√

A2−B2

α2
1π

.

Case 2. For the quartic potential, eq. (11), we again take the same ansatz for
φ(x, y) and the same conditions on α1, β1 and γ1 as taken in the previous case.
Therefore, using eqs (11), (12) and (18) in eq. (3) and then rationalizing we get
the following equation in addition to eqs (13b)–(13o):

E1 = −4α20 + α11. (22)

Here, in order to get the solutions of these equations, we follow the same prescription
as adopted in Case 2 of §3 and obtain the same solutions as given there. Hence,
the energy eigenvalue for the first excited state is written as

E1 = 2

√
a20 +

√
a2
20 − a2

11/4−
√

a20 −
√

a2
20 − a2

11/4, (23)

and the corresponding eigenfunction is given as

ψ1(x, y) = Nα1(x− y) exp
[
− 1

2

√
a20 +

√
a2
20 − a2

11/4(x2 + y2)

−
√

a20 −
√

a2
20 − a2

11/4xy − 1
3
√

a40(x3 + 3x2y)

−1
3
√

a04(y3 + 3xy2)
]
. (24)
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5. The second excited state solutions

For obtaining the energy eigenvalues of the second excited state of the systems
considered in this work, we assume the following form of φ(x, y):

φ(x, y) = α2x
2 + β2y

2 + γ2, (25)

where α2, β2 and γ2 are considered as real constants.

Case 1. For the quadratic potential, using eqs (5), (6) and (25) in eq. (3) and
rationalizing we get the following equation in addition to eqs (7b)–(7d) as

E2 = −6α20 + α11, (26)

under the condition α2 = −β2 and γ2 = 0.
The solutions for α20, α02 and α11 are the same as given in eqs (8a) and (8b).

Hence from eq. (26), the eigenvalue is written as

E2 = 3

√
a20 +

√
a2
20 − a2

11/4−
√

a20 −
√

a2
20 − a2

11/4, (27)

and the eigenfunction is given by

ψ2(x, y) = α2(x2 − y2) exp
[
− 1

2

√
a20 +

√
a2
20 − a2

11/4(x2 + y2)

−
√

a20 −
√

a2
20 − a2

11/4xy

]
. (28)

The normalization constant for this case is computed as N =
√

(A2−B2)
√

A2−B2

α2
2π

.

Case 2. For the quartic potential, we use eqs (11), (12) and (25) in eq. (3) and set
α2 = −β2 and γ2 = 0, so that the following equations are obtained in addition to
eqs (13d)–(13o) as

E2 = −6α20, (29a)
9α30 + α12 = a10, (29b)
9α03 + α21 = a01. (29c)

As far as solutions of various αij are concerned, these are the same as obtained in
Case 2 of §3. However, a few constraining relations are different.

Hence the eigenvalue is written as

E2 = 3

√
a20 +

√
a2
20 − a2

11/4, (30)

and the eigenfunction is given as
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ψ2(x, y) = α2(x2 − y2) exp
[
− 1

2

√
a20 +

√
a2
20 − a2

11/4(x2 + y2)

−
√

a20 −
√

a2
20 − a2

11/4xy

−1
3
√

a40(x3 + 3x2y)− 1
3
√

a04(y3 + 3xy2)
]
. (31)

6. Conclusions

In the present work, we have overcome the difficulties posed in [6,7] pertaining to
the solutions of the SE for the coupled quadratic and quartic potentials in two
dimensions. Within the framework of the eigenfunction ansatz method, with some
simple restrictions, we could obtain the ground state solutions for such systems
and found explicit expressions for the ground state energies and the associated
eigenfunctions without adding any cross/inverse terms. We further extended the
scope of the eigenfunction ansatz method for higher excited states and found en-
ergy eigenvalues and eigenfunctions for the first and second excited states of the
quadratic and quartic potentials. The solutions found in this study are quasi-exact
with certain constraints on the potential parameters. The role of these constraints
is very crucial not only in deciding the ground and higher excited states but also in
obtaining the bound states for the system [7]. The number of constraints increases
further when some restrictions on the choices of coefficients of the functions g(x, y)
and φ(x, y) are imposed in order to solve an overdetermined set of equations for
various αij ’s.
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