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Abstract. We demonstrate that the nilpotent Becchi-Rouet—Stora—Tyutin (BRST) and
anti-BRST symmetry invariance of the Lagrangian density of a four (3 4+ 1)-dimensional
(4D) non-Abelian 1-form gauge theory with Dirac fields can be captured within the frame-
work of the superfield approach to BRST formalism. The above 4D theory, where there
is an explicit coupling between the non-Abelian 1-form gauge field and the Dirac fields, is
considered on a (4,2)-dimensional supermanifold, parametrized by the bosonic 4D space-
time variables and a pair of Grassmannian variables. We show that the Grassmannian
independence of the super-Lagrangian density, expressed in terms of the (4,2)-dimensional
superfields, is a clear signature of the presence of the (anti-)BRST invariance in the original
4D theory.
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1. Introduction

The geometrical interpretations of the nilpotency and anticommutativity proper-
ties, associated with the (anti-)BRST symmetry transformations of the gauge and
(anti-)ghost fields of a given 1-form gauge theory, have been provided within the
framework of the usual superfield approach to BRST formalism [1-9]. This ap-
proach, however, has not been able to shed any light on the nilpotent (anti-)BRST
symmetry transformations of the matter fields of an interacting (non-)Abelian 1-
form gauge theory.

In a set of research papers [10-20], the above superfield formulation [1-9], has
been consistently extended so as to derive the nilpotent (anti-)BRST symmetry
transformations for the matter (i.e. Dirac, complex scalar, etc.) fields of a given
(non-)Abelian 1-form gauge theory. In the above attempts [1-20], however, the
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(anti-)BRST invariance of the Lagrangian densities has not yet been captured
within the framework of the superfield formulation.

The central theme of a couple of very recent papers [21,22] concerns itself with
the (anti-)BRST invariance of the 4D (non-)Abelian 1-form gauge theories within
the framework of the superfield approach to BRST formalism. To be precise, it has
been shown that the Grassmannian independence of the super-Lagrangian density,
expressed in terms of the superfields defined on the (4,2)-dimensional supermani-
fold, is a clear-cut signature of the presence of the (anti-)BRST invariance in the
above 1-form gauge theories.

The field theoretical models that have been considered in [21,22] are (i) the 4D
(non-)Abelian gauge theory without any interaction with matter fields [21] and (ii)
the interacting Abelian U(1) 1-form gauge theory with Dirac fields [22]. The pur-
pose of our present investigation is to generalize our results of [21,22] to the case
of the interacting 4D non-Abelian gauge theory (with Dirac fields). Furthermore,
we demonstrate that, like our earlier observations in [21,22], the presence of the
(anti-)BRST invariance in the 4D ordinary non-Abelian 1-form gauge theory is
encoded in the proof that the Grassmannian derivatives, acting on the super-
Lagrangian density, produce zero result.

The motivating factors that have propelled us to pursue our present investigation
are as follows: First and foremost, it is important to check the validity of our results
(that were obtained for the (non-)interacting Abelian 1-form gauge theory) to our
present model of the interacting non-Abelian theory. Second, it is interesting to
explore the geometrical interpretation of the (anti-)BRST invariance for our present
interacting non-Abelian gauge theory which were found to be quite cute and simple
for the interacting U(1) gauge theory (with Dirac fields). Finally, our earlier works
[21,22] and our present endeavour are our modest steps towards our main goal
of applying the superfield formulation to the 2-form (and still higher form) gauge
theories.

The material of our present investigation is organized as follows: In §2, we re-
capitulate the bare essentials of the (anti-)BRST invariance of our present inter-
acting non-Abelian theory in the Lagrangian formulation. Section 3 is devoted to
a brief discussion of the horizontality condition and its consequences within the
framework of the superfield formulation. Section 4 deals with a gauge invariant
restriction (GIR) on the matter superfields of the (4,2)-dimensional supermanifold
and its outcome for the (anti-)BRST invariance in our present 4D theory. In §5,
we provide a concise discussion of a single GIR on the matter superfields that leads
to the consequences of §3 and §4 in one stroke. Finally, we make some concluding
remarks in §6.

2. Off-shell nilpotent (anti-)BRST symmetry invariance:
Lagrangian formulation

Let us begin with the following Lagrangian densities for the 4D interacting non-
Abelian 1-form gauge theory with Dirac fields in the Feynman gauge [23]
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1 —
Cél) = _ZFMV : F,u,l/ + ¢(W”Du - m)/(/) + B- (aﬂAM)

1 _ _
+5(B-B+B-B)~i9,C-D'C, (1)

1 - _
Cég) _ _ZFHV -F, +y9@vy*D, —m)yY — B - (9,A")

1 o _
+5(B-B+B-B)~iD,C-0"C, (2)

where D,C = 0,C +iA, x C and D,y = 0,9 + i(A, - T)y are the covariant
derivatives on the fermionic ghost field C' and matter (Dirac) field v, respectively.
These covariant derivatives satisfy [D,,, D, /) = iF,,¢, [D,, D,|C = iF,, x C which
define [23a] the curvature tensor F),, = 0,4, —0, A, +1A, x A,. Here B and B are
the auxiliary fields that satisfy the Curci-Ferrari condition B+ B = —(C x C) [24]
so as to make the following off-shell nilpotent (s%a)b = 0) (anti-)BRST symmetry

transformations s,); (see, e.g. [23])

SbA,u:D,uca SbC:—%(CXC), SbC:’iB, SbBZO,
sy = —i(C-T)Y, spb=—ip(C-T), s,B=1i(BxC), (3)

savA, = D,C,  sqC = _%@ % C), saC =iB, suB =0,
Sabw = 71(6 ! T)quv Sabd_) = 7“/_}((;’ : T)7 SabB = Z(B X 0)7 (4)

anticommutative (spSap + Sapsy = 0) in nature. In the above, the fields C*(C?) are
the anticommuting (anti-)ghost fields that are required for the proof of unitarity in
the theory [25] and 4* are the usual 4 x 4 Dirac matrices.

The above nilpotent transformations (3) and (4) are the symmetry transforma-
tions because the Lagrangian densities change to total derivatives under them. The
key reasons behind the (anti-)BRST invariance are (i) the symmetry invariance of
the kinetic energy term (i.e. s(q)[F*” - F,] = 0), (ii) the invariance of the terms
that contain Dirac fields (i.e. s(q)p[t)(i7* D, —m)y] = 0), and (iii) the invariance
of the gauge-fixing and Faddeev—Popov ghost term. In fact, the last statement can
be mathematically expressed as

SbSab [%Au AP+ C-C
:B-(G#A“)+%(B'B+B~B)—i@MC’-D”C
E—B-(&HA“)Jr%(B~B+B~B)—iD#C’~8“C. (5)

The above expression clearly implies (due to the nilpotency and anticommutativity

of 5(q)p) that the gauge-fixing and Faddeev-Popov ghost terms together remain
invariant under the (anti-)BRST symmetry transformations.
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3. Horizontality condition: Outcomes

To tap the potential and power of the celebrated horizontality condition (HC), first
of all, we generalize the ordinary exterior derivative d = dz*d,, and the ordinary

1-form connection (A = dx#A,,) of the 4D theory to their counterparts on the
(4,2)-dimensional supermanifold as follows:

d—d=da" 9, +df g + d0 9y,
AW — AW = dgH(B, - T) + dO(F - T) + dO(F - T), (6)

where (B, F, F) are the superfields defined on the above supermanifold. These are
the generalization of the basic fields (A,,C,C) as can be seen from the following
expansion along the Grassmannian directions [4,5,16]:

B( 0, 9)—(AH~T)( )+ 0(Ry, T)(rf:)+9(R - T)(x) +i00(S, - T)(x),
_) (C-T)(x) +i0(B - T)(x) +i0(B-T)(x) +i00(s - T)(x),
,0) = (C-T)(x) +i60(B - T)(x) +if(B .T)(a:)ﬂea(g.T)(a;).

(7)

It is elementary to check that, in the limit (0,0) — 0, we retrieve basic 4D local
fields A,,,C and C of our Lagrangian densities (1) and/or (2).

The HC is the requirement that the super 2-form F® = dA® 44D A AD g
equal to the ordinary 2-form F(®) = dAM 4+ iAW A AD | This equality leads to
the determination of the secondary fields R,,, Rm SM,B,B, s, 8 of expansion (7) in
terms of the basic fields (see, e.g. [16]). The ensuing expansion, with these values
suitably inserted into (7), looks as [25a]

B (2,0,0) = A, +0D,C + 0D, C +i00(D.B + D,C x C)
= Au(z) + 0(sap Ay (@) + 0(spAu(x)) + 00(sp5a0 A (@),
F®M)(2,0,0) = C +i0B — %9‘(0 x C) — 00(B x C)
= CO(x) +0(sapC(x)) + 0(5pC(x)) + 00(sp50C (z)),
FM(2,0,0) = C — %9(6 x C) +i0B + 09(B x C)
=C(x) +0(sapC(x)) + 0(s5C(x)) + 00(sp50C (z))- (8)
In the above, the superscript (h) stands for the superfields that are obtained after
the application of the HC and s(,); are the transformations (3) and (4).

It is evident that the (anti-)BRST symmetry transformations can be expressed
as: 5,8 = limg_o(0/00)QM) | 5,4, = limy_((0/90)Q"). Here the local 4D generic
field is Q(z) and its counterpart on the (4,2)-dimensional supermanifold is the
superfield Q™) (obtained after the application of HC). The above mapping provides
the geometrical interpretation of the nilpotent (anti-)BRST transformations s,

as the translational generators (Jg,d;) along the Grassmannian directions of the
(4,2)-dimensional supermanifold.
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The 2-form supercurvature tensor Fl(“}f) = BHB,(,h) - 6,,[3;@ + iB,(Lh) A B can be
explicitly expanded along the Grassmannian directions as [4]

FW) = Fly + i0(F x C) + i0(F, x C)
—00(F,, x B+ F,, x C x C). (9)

The above equation immediately implies that the kinetic energy term of the La-
grangian densities (1) and/or (2) remains unaffected due to presence of the Grass-
mannian variables, namely (see, e.g. [4] for details)

1 ~uv(h —(h 1 ng
_EF/ (h) . F;E’;) = _EF/ - F. (10)

In the above proof, the structure constants f?*° (which are chosen to be totally
antisymmetric [23] for the SU(N) group) play an important role. Physically, the

above equality shows that the LHS is, ultimately, independent (9 [F we(h) . |, l(/;)] =

0, dp[Fr(h) . F,SZ)] = 0) of the Grassmannian variables 6 and §. This observation,
in turn, implies the (anti-)BRST invariance of the 4D kinetic energy term in the
framework of superfield approach to BRST formalism because of the mappings:
Sp = limgﬂoag, Sab < limg_}oag.

In an exactly similar fashion, it can be checked that the gauge-fixing and
Faddeev—Popov ghost terms of the theory (see eq. (5)) can be expressed in terms
of the Grassmannian derivatives (Jy,d3) and the superfields (obtained after the
application of HC) as

i ~ o 0
LA, AM c-c} -2 —[
SoSab |5 A AT a6 o0
where the superfields, with superscript (h), are listed in (8). It is now elementary to
check that the following super-Lagrangian density (£s), containing kinetic energy,
gauge-fixing and Faddeev—Popov ghost terms, namely,

1

2lgl(jb) By () )| (11)

- 1~ - g 01 =

is the counterpart of its 4D analogue that is represented by the following Lagrangian
density (i.e. Lar):

1 _ 1 _ _

Ly = —ZF‘“’ - F, — B (9,A") + 5(B -B+B-B)-iD,C-9"C
1 1 _ _

= _ZFW -F,,+B-(0,A") + 5(B -B+ B-B)—1i0,C - D*C.

(13)

The above Lagrangian density is a part of the Lagrangian densities (1) and
(2). One of the decisive consequences of the HC is that the super-Lagrangian
density L M is independent of the Grassmannian variables because limg_,oagﬁ m=0
and limg_ (39 Las = 0. This key statement is equivalent to the (anti-)BRST invari-
ance of the kinetic energy, gauge-fixing and Faddeev—Popov ghost terms of the 4D
Lagrangian density of our present theory.
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Mathematically, the above correspondence can be succinctly expressed as

gi_r)%%ﬁM:O@SbﬁM:(L %E}%ﬁM:O@SabﬁM:O (14)
This mapping captures, in a very simple manner, the (anti-)BRST invariance of
the kinetic energy, gauge-fixing and Faddeev-Popov ghost terms of the Lagrangian
density within the framework of the superfield formalism. In other words, if the
action of the Grassmannian derivatives on the super-Lagrangian density happens to
be zero, the corresponding 4D Lagrangian density would respect the (anti-)BRST
invariance. In the above proof (cf. (14)), the nilpotency (i.e. 95 = 0,97 = 0)
and anticommutativity (i.e. 9905 + 0509 = 0) of the translational generators along
Grassmannian directions play key roles.

4. Gauge invariant restriction: Consequences

To obtain the (anti-)BRST symmetry transformations for the matter fields of the
theory, we exploit the following gauge invariant restriction (GIR) on the matter
superfields [16]:

U(z,0,0)[d+iAVMW(z,0,0) = (z)[d +iAD](z), (15)

where AW — dx“Bth) +d0F M) 4 d6F ™ is the super 1-form connection expressed
in terms of the superfields listed in (8). It is interesting to note that, in the above
unique relationship, the HC and matter (super) fields are intertwined in a gauge
(i.e. BRST) invariant manner.

The matter superfields (¥, ¥) are the generalizations of the 4D Dirac fields (v, )
of the Lagrangian densities (1) and/or (2) as can be seen from the following expan-
sion:

U(z,0,0) = (x) +i0(by - T) +i0(by - T) +i00(f - T),
U(z,0,0) = (x) +i0(by - T) +i0(by - T) +i00(f - T), (16)

where the secondary fields by, by, bo, ba, f, f are determined in terms of the basic
fields from the GIR (15). These expressions are as follows [16,19]:

bi=—(C-T), bi=—(C-T)yp, by=-4%(C-T), by=-p(C-T),

fi[B+§(CxC)M, eria/_){BJr;(C’xC)} (17)
Insertions of the above values into expansion (16) leads to [16-19)

U (2,0,0) = h(x)+0(—iC - TY)+0(—iC - Tep)+60 <B+;C X é) ¥,
(@) + 0(satp(x)) + (s (x)) + 00 (spsapt)(2)),
Bt 0(—ithC - T) + B(—i%C - T) — 060 (3 Fi0x c) ,
(@) + 0(sapth(x)) + 0(sp1p(2)) + 00(spsapip()),  (18)

U9 (z,0,0)
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where the nilpotent transformations s(,), are listed in (3) and (4) and the super-
script (G) on the above matter superfields denotes that these superfields have been
obtained after the application of GIR.

As a consequence of the above expansion (18) (that has been obtained after the
application of the GIR in (15)), it is clear that the following equality (that would
be useful for our discussions) is true, namely,

D (,0,0)0' D (2,0,0) = ()9 (). (19)

Furthermore, it can be checked that the following key equality is also valid on the
matter superfields (after the application of GIR and HC):

TO[MDE — m]w(© = () (ir" D, — m)i(a) = La, (20)

where £, is the 4D Lagrangian density that contains Dirac fields and v are the
generalizations of the 4 x 4 Dirac matrices onto (4,2)-dimensional supermanifold.
With the specific choice of v = (v, Cy, C5), we obtain

VMDY =418, +iBD) + Cy(g +iF M) + C505 +iF ™), (21)

where Cy and Cj are some anticommuting (Cj = 0,02 = 0,CyCj + C3Cy = 0)
constants which go to zero (i.e. Cy — 0,Cy — 0) in the limiting case of (6,8) — 0.
These requirements on Cy and Cp are essential so as to maintain the bosonic nature
of the RHS and to prove that

(glé_l)rn OWDM =D, =4"(0, +iA, - T). (22)

The above equation implies that, ultimately, we obtain the ordinary 4D Dirac
Lagrangian density when the Grassmannian variables are set equal to zero.

The exact mathematical form of the constants Cy and Cj is not important for
our present discussions because, irrespective of their form, the following equations
(with the superfields F®, F" (@) are always satisfied:

(8 +iFMO @ =0, (95 +iFM)BD = . (23)

As a consequence, the exact mathematical form of the anticommuting constants Cy
and Cj does not affect the key results that emerge from eq. (20) which happens to
be a GIR on the matter superfields of the theory. With inputs from (23), it is clear
that the condition (20) reduces to

T [int (8, + iBI) — m]U'D) = p(z)(iv" Dy, — m)ip(x). (24)

The above equation is readily satisfied if we insert the superfield expansions (8)
and (18) that have been obtained after the application of HC and GIR.

It is clear from eq. (24) that the super-Lagrangian density (£4) with gauge and
matter superfields and the ordinary Lagrangian density (£4) with gauge and Dirac
ordinary fields, namely,
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La =V DNy (0, +iBM) = m]¥' D, Lq=d(a)(ir" Dy — m)v(x),
(25)

are equal in the sense that the (4,2)-dimensional super-Lagrangian density Lq

is effectively independent of the Grassmannian variables 6 and 6. Thus, the
(anti-)BRST invariance can be expressed by the following mappings:

glir(l) %Ed =0< Sbﬁd =0, (%li% %Ed =0& Sabﬁd =0. (26)
Here 54y, are the transformations that are given in (3) and (4).

It is worthwhile to recall that the ordinary Lagrangian density £, remains in-
variant (i.e. s(a)b[zz(i’y“é)ﬂ —m)y = 0) under the symmetry transformations sqyp.
This is what is reflected in the Grassmannian independence of the super-Lagrangian
density (see (26)). In other words, the GIR in (15) leads to the derivation of con-
dition (20) which, in turn, implies that the Grassmannian derivatives acting on the

super-Lagrangian density £4 produce zero result.

5. Single gauge invariant restriction: Impacts

To obtain all the results of §3 and §4, we begin with the following GIR on the
matter superfields (see, e.g. [19]):

U(z,0,0)DDV(z,0,0) = y(z) DD(z), (27)
where the (super) covariant derivatives (D)D and their very intimate connection
with the (super) 2-forms (F(®)F®) are intertwined together in a beautiful manner.
In the above, the 1-form covariant derivatives are defined as

D=d+iAY, D=d+iAW, (28)

where all the symbols have been explained in our previous sections.
It should be noted that the above restriction is also gauge invariant because the
RHS can be explicitly expressed as

d(x)DDY(x) = ith () FD(x), (29)

where F®) = L(da# A d2¥)[0,4, — 0, A, + 1A, x A,]. Tt is clear that, under the
SU(N) gauge transformations ¢ — U, ) — U~ F?) — UFA U~ the above
expression remains invariant. Here U € SU(N) is the Lie algebraic (group valued)
unitary transformations on the Dirac fields as well as SU(N) gauge field. The
latter, in turn, implies the transformation for F(2).

The points to be emphasized, at this stage, are as follows. First, we obtain all the
results that have been obtained (separately and independently) by the applications
of HC (see §3) and the GIR (see (15) and (20)) in one stroke from our single
GIR in (27). Second, our unique relation (27) combines the (super) curvature 2-
forms (F(?))F®) (super) covariant derivatives (D)D and matter (super) fields in a

512 Pramana — J. Phys., Vol. 72, No. 3, March 2009



Non-Abelian 1-form gauge theory

beautiful manner. Finally, it is gratifying that the supercurvature tensor F v, that
has Grassmannian dependence under HC (see eq. (9)), is now free of them (see,
e.g. [19] for details). As a result, one need not exploit the total super kinetic energy
term to show the Grassmannian independence of the latter. Thus, our restriction
(27) provides an alternative to (and generalization of) the HC as well as GIR in
(15).

Ultimately, it can be seen that the total super-Lagrangian density L, defined in
terms of the (4,2)-dimensional superfields, can be expressed as

ET = EM + Ed, (30)

where the symbols have been explained earlier in §3 and §4. The (anti-)BRST
invariance of the 4D theory can be captured in the language of the total super-
Lagrangian density (L7) and the Grassmannian derivatives as

.0 4 .0 4
;l_}r% %ﬁT =0& spLr = 0, %li% %‘CT =0 sl =0. (31)

Thus, we note that the real impact of the restriction (27) on the superfields, defined

on the (4,2)-dimensional supermanifold, is the Grassmannian independence of the
total super-Lagrangian density L.

6. Conclusions

One of the highlights of our present investigation is the simplicity that has been
brought into the discussion of the (anti-) BRST invariance in the context of the
4D non-Abelian 1-form gauge theory (with Dirac fields). All one has to basically
show is the Grassmannian independence of the (4,2)-dimensional super-Lagrangian
density of the theory expressed in terms of the superfields that are obtained after
the application of the HC and GIR.

Geometrically, the following points are important for the existence of the
(anti-)BRST invariance within the framework of the superfield formulation. First,
if the translation of the super-Lagrangian density along the -direction of the (4,2)-
dimensional supermanifold is zero, there will be BRST invariance in the 4D theory.
Second, if the above statement is valid for the 6-direction of the supermanifold,
there will be anti-BRST invariance in the theory. Finally, if the above statements
are valid for both the Grassmannian directions together, there will be (anti-)BRST
invariance together in the theory.

A very interesting feature of the superfield approach to BRST formalism is as
follows: There is an absolute certainty that the (anti-) BRST symmetry transforma-
tions s(4), would always be nilpotent and anticommuting as, geometrically, these
correspond to the translational generators (9y, dg) along the Grassmannian direc-
tions of the (4,2)-dimensional supermanifold. The latter has the natural property
that 95 = 0,05 = 0 and 9y + 9509 = 0. Thus, the above two key properties
of the (anti-)BRST symmetries are always encoded (and in-built) in our present
superfield approach to BRST formalism.
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In a very recent publication of one of us [26], the absolutely anticommuting
(anti-)BRST symmetry transformations have been obtained in the context of the
4D Abelian 2-form gauge theory where the superfield approach to BRST formalism
has played a key (but somewhat hidden) role. In this attempt, it has also been
shown that the anticommutativity property of the (anti-)BRST transformations is
deeply connected with the concepts of gerbes.

One of us has been involved with a slightly different type of superspace (also
called the BRST superspace) formulation which has also been applied to study
gauge theories [27-29]. The central feature of this approach is that the whole super-
Lagrangian density has been accommodated in a single compact (4,2)-dimensional
gauge invariant action from which the WT identities emerge very naturally. As
a consequence, this type of superspace formulation is useful in studying the
renormalization of gauge theories.

It would be interesting to unify both the above types of superfield approaches to
BRST formalism and study the 4D and 6D (non-)Abelian 2-form gauge theories. In
particular, the application of our superspace formulation to the (higher-form) tensor
gauge field theories is quite attractive. We are intensively involved, at present, with
the above promising problems and we plan to report about these developments in
our future publications.
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