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Abstract. We make use of a coordinate-free approach to implement Vakhitov–Kolokolov
criterion for stability analysis in order to study the effects of three-body atomic recombi-
nation and lattice potential on the matter–wave bright solitons formed in Bose–Einstein
condensates. We analytically demonstrate that (i) the critical number of atoms in a stable
BEC soliton is just half the number of atoms in a marginally stable Townes-like soliton
and (ii) an additive optical lattice potential further reduces this number by a factor of√

1− bg3 with g3 the coupling constant of the lattice potential and b = 0.7301.
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1. Introduction

Solitons of the quintic nonlinear Schrödinger (NLS) equation in one dimension (1D)
are unstable and denote localized excitations similar to Townes solitons of the cubic
NLS equation in two spatial dimensions (2D) [1]. As opposed to this, the NLS equa-
tion with purely cubic nonlinearity has a stable solution in the 1D case. The NLS
equation containing both cubic and quintic terms has many applicative relevance.
For example, in the case of Bose–Einstein condensation it models bright solitons
in the condensate with two- and three-body interactions. Further, Bose–Einstein
condensates (BECs) in the optical lattice allow interesting localized phenomena [2].
One finds localized states with energies lying in the gaps of the band structure that
arise in the linear periodic problem. A BEC initially confined in a highly elongated
harmonic trap if allowed for free propagation through an optical lattice along the
x direction will be governed by the quasi-one-dimensional evolution equation [3]

iψt + ψxx + g1|ψ|4ψ + g2|ψ|2ψ + g3 cos 2xψ − ψ = 0. (1)
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Equation (1) is often called the Gross–Pitaevskii equation. Here ψ = ψ(x, t) is the
wave function of the condensate. It is also called the order parameter. The last
term in (1) gives the signature of the initial trap in the propagating BEC. Clearly,
the term before the last stands for the optical lattice potential with a coupling
constant g3. The cubic (4th) and quintic (3rd) terms have their dynamical origin
in the two- and three-body atomic interactions. The coupling constants g2 and g1

are parametrized by the s-wave scattering length for atom–atom collisions in the
BEC.

The coupling constant g1 ¿ g2. Thus the three-body interaction cannot desta-
bilize the BEC soliton. Despite that, it may be quite interesting to examine if the
perturbative effect of this interaction could be judiciously exploited to derive some
new physical information for the Bose-condensed atoms. Moreover, it is always an
interesting curiosity to investigate the influence of lattice potentials on stable BEC
solitons. To achieve this goal we shall make use of the Vakhitov–Kolokolov criterion
(VKC) [4] for stability analysis. Traditionally, the application of the VKC requires
an explicit form of the stationary solution of the associated evolution equation in
terms of the space variables. But such solution may not be always available. Keep-
ing this in view we introduce in §2 a coordinate-free approach to implement VKC
for stability analysis [5]. For the quintic NLS equation the stationary solution is
available in closed form. We first use this solution in VKC to demonstrate the
instability of the Townes-like soliton and then derive the same result by using our
coordinate-free approach. In §3 we separately deal with the cubic–quintic nonlin-
ear Schrödinger (CQNLS) equation and the full equation in (1) representing BEC
soliton loaded in a lattice. The treatment of the CQNLS equation is quite straight-
forward and provides us with a basis to express the critical number of atoms (Nc) in
the soliton of the CQNLS equation with the mass of the marginally stable Townes-
like soliton. The periodic potential in the full equation breaks the translational
invariance of the problem. This introduces new mathematical complications even
in our coordinate-free approach. To derive an analytical expression for the first
integral of (1) we need to introduce an ansatz for the effect of the optical lattice on
the BEC soliton.

2. Coordinate-free approach for VKC

The solitary wave solutions of the quintic NLS equation given by

iψt + ψxx + g1|ψ|4ψ = 0 (2)

for g1 > 0 have stationary solutions of the form [6]

ψ(x, t) = φ(x, Λ)eiΛt. (3)

Using (3) in (2) we write a nonlinear eigenvalue equation

d2φ

dx2
+ g1φ

5 − Λφ = 0. (4)

Understandably, Λ represents the frequency of the phase or the so-called chemical
potential. The solution
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φ(x, Λ) =
(

3Λ
g1

)1/4

sech1/2
(
2
√

Λx
)

(5)

of (4) gives the mass

N(Λ) or NQ
c =

∫ ∞

−∞
|ψ|2dx =

∫ ∞

−∞
φ2(x, Λ)dx =

√
3
g1

π

2
. (6)

The Vakhitov–Kolokolov criterion tells us that the soliton solutions φ(x, Λ) for
different Λ values are stable and unstable if dN

dΛ > 0 and dN
dΛ < 0 respectively.

Since N(Λ) in (6) does not depend on Λ, application of VKC implies marginal
stability of these solitary solutions. Thus, if a solution is perturbed such that
N > NQ

c (=
√

3
g1

π
2 ), a singularity appears in the intensity profile within a finite

value of t and the solution collapses. On the other hand, a perturbed stationary
solution with N < Nc cannot remain localized. The delocalization leads to complete
dispersion of the solitary wave.

From the above it is clear that application of the VKC for stability analysis
requires the explicit form of the stationary solution in terms of the x coordinate.
But similar forms are not easily available for (1). Thus, it is quite urgent to have a
theoretical framework in which use of the VKC will not call for a specific functional
form of φ(x, Λ). In the following we describe a coordinate-free approach for stability
analysis on the basis of VKC.

Equation (4) can be integrated to get

E =
1
2
φ2

x +
1
6
g1φ

6 − 1
2
Λφ2. (7)

The first integral E of (4) is the Hamiltonian or energy density of the quintic NLS
equation. By imposing the boundary condition φ → 0 for x →∞ one finds E = 0.
Thus

dφ

dx
= φ

(
Λ− g1

3
φ4

)1/2

. (8)

Substituting the value of dx from (8) in (6) we have

N(Λ) = lim
φ→0

[∫
φ dφ

(
Λ− g1

3 φ4
)1/2

]
. (9)

The integral in (9) is elementary and the limit can easily be evaluated to verify
that the result obtained from (9) is in exact agreement with that in (6). Formula
(9) which is free from the coordinate x, forms the basis of our subsequent analysis.

3. Cubic–quintic BEC solitons in the lattice potential

First consider the BEC equation (1) with cubic and quintic terms only. In this case
we shall have
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Figure 1. t1 and t2 as a function x.

E =
1
2
φ2

x +
g1

6
φ6 +

g2

4
φ4 − 1

2
(1 + Λ) φ2. (10)

For the value of energy density in (10), the mass N(Λ) is obtained as

N(Λ) =
√

3
2
√

g1


cos−1




3
4

g2
g1√

3
g1

(
1 + Λ + 3

16
g2
2

g1

)


− π

2


 . (11)

From (11)

dN

dΛ
=

3
16

g2

g1

1√
1 + Λ

1(
1 + Λ + 3

16
g2
2

g1

) . (12)

The derivative dN/dΛ is positive for any value of Λ > −1. Obviously, Λ > −1 repre-
sents the stability condition of a BEC soliton with interacting atoms. The condition
Λ > −1 − 3

16
g2
2

g1
is not valid because this will make the radical in (12) imaginary.

Equation (11) can be used to obtain the critical number of Bose-condensed atoms
in terms of the coupling constant for three-body interactions and we have

NCQ
c =

√
3
g1

π

4
. (13)

Comparison of (6) and (13) shows that the critical number of atoms in a stable
soliton of the CQNLS equation is equal to half the number of particles in a mar-
ginally stable Townes-like soliton. It is important to note that we could arrive at
this conclusion only by applying VKC on the cubic–quintic quasi-one-dimensional
Gross–Pitaevskii equation.

The optical lattice potential in (1) provides an awkward analytical constraint
for application of the above procedure to the full BEC equation. For example,
the energy density becomes an explicit function of x such that construction of an
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analytic expression for N(Λ) similar to that in (9) or (11) is no longer possible. This
difficulty cannot be circumvented even by writing an action functional for (1) and
then constructing a Hamiltonian density by the use of Legendré map. To implement
our coordinate-free approach for the stability analysis of (1) we, therefore, take
recourse to the use of the following method:

Combining (1) and (3) and multiplying the resultant equation by φx we write

φxφxx + g1φ
5φx + g2φ

3φx + g3φφx cos(2x)− (1 + Λ)φφx = 0. (14)

We venture to suggest that the term φφx cos(2x) = t1(say) can be approximated
by − (

aφ3φx + bφxφ2x

)
= t2(say). In figure 1 we display t1 and t2 as a function of

x for φ given in (5) with Λ = 1. The solid curve (a) gives the variation of t1 with
respect to x and dashed curve (b) denotes similar variation for t2. The observed
fitting is done for a = 0.0913 and b = 0.7301. One may be interested to see if t1 = t2
remains translationally invariant. To that end we have shifted the x coordinate by
an amount of 5 units and replotted the curves t1 and t2. The curves corresponding
to a and b are now denoted by c and d. Comparison between the two sets of curves
clearly exhibits the translational invariance of t1 = t2. However, we note that the
agreement between a and b or c and d is qualitative. A better fit could perhaps be
obtained by replacing φ3 in t2 by φn and then carrying out the fitting procedure
by varying a, b and n simultaneously. But we shall work with t2 that reproduces
the plot in figure 1. For our choice of t2 we obtain

E =
1
2

(1− bg3)φ2
x +

g1

6
φ6 +

1
4

(g2 − ag3)φ4 − 1
2

(1 + Λ) φ2 (15)

and

N (Λ) =
1
2

√
3
g1

(1− bg3)


cos−1


 k√

3
g1

(1 + Λ) + k2


− π

2


 , (16)

where k = 3
4g1

(g2 − ag3). From (15) we get the conditions

g3 À g2 (17a)

and

Λ > −1 (17b)

for the stability of the BEC soliton. In writing (17a) we have used the values of
a and b. While the inequality in (17b) is the same as that found for the CQNLS
equation, the relation (17a) sets a criterion for choosing the coupling constant for
the lattice potential to produce a stable BEC. For (1) we obtain the critical mass
as

NCQOL
c =

π

4

√
3
g1

√
1− bg3. (18)
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The subscript CQOL on Nc has been used to indicate that (1) involves all in-
teractions (cubic, quintic and optical lattice). From (13) and (18) we find that
NCQOL

c < NCQ
c . A plausible explanation for why a lattice leads to reduced value

of Nc for which stability could be maintained is as follows.
When a BEC is confined jointly in an axial and optical traps, the latter introduces

a new length scale to the system, namely, the lattice spacing which is much smaller
than the BEC itself. Thus we have a periodic potential sitting on the harmonic
trap [7] to provide a large number of new local trapping centres. The BEC will be
squeezed towards the centre of each of these confining traps with a region of low
density between the traps. As a result of this squeezing, the BEC collapses and leads
to a value of Nc smaller than that in the absence of the optical lattice. If the centre of
the quasi-one-dimensional magnetic trap, instead of keeping stationary with respect
to the lattice, is suddenly shifted along the longitudinal direction, the stability
is further affected by the onset of dissipative processes up to the full removal of
the superfluid component [8]. Very recently, in an interesting work, Vyas et al [9]
derived an analytical expression for the order parameter of the superfluid phase for
a BEC loaded in an optical lattice when both two- and three-body interactions are
operative. It appears that the mathematical framework for such studies was given
by Bronski et al [10]. However, we have found that the wave functions of ref. [9]
can be judiciously used to verify our claim regarding the atom density of a BEC in
an optical lattice.
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